These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 3041151)

  • 1. Temperature dependence of proton relaxation times in vitro.
    Nelson TR; Tung SM
    Magn Reson Imaging; 1987; 5(3):189-99. PubMed ID: 3041151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic field dependence of the distribution of NMR relaxation times in the living human brain.
    Oros-Peusquens AM; Laurila M; Shah NJ
    MAGMA; 2008 Mar; 21(1-2):131-47. PubMed ID: 18338191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dependence on T1 of the echo amplitudes from multiple spin-echo sequences with equidistant echoes: simulation studies.
    Fransson A; Ericsson A; Sperber GO
    Magn Reson Imaging; 1993; 11(2):197-205. PubMed ID: 8384283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methodology for the measurement and analysis of relaxation times in proton imaging.
    MacFall JR; Wehrli FW; Breger RK; Johnson GA
    Magn Reson Imaging; 1987; 5(3):209-20. PubMed ID: 3041152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. T1 and T2 temperature dependence of female human breast adipose tissue at 1.5 T: groundwork for monitoring thermal therapies in the breast.
    Baron P; Deckers R; Knuttel FM; Bartels LW
    NMR Biomed; 2015 Nov; 28(11):1463-70. PubMed ID: 26403166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Approximate analytical expressions for the Carr-Purcell-Meiboom-Gill sequences: Decay rates and modulation zeros of the echo train and the relation between the T
    Kandrashkin YE
    J Magn Reson; 2023 Jul; 352():107464. PubMed ID: 37148712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review of 1H nuclear magnetic resonance relaxation in pathology: are T1 and T2 diagnostic?
    Bottomley PA; Hardy CJ; Argersinger RE; Allen-Moore G
    Med Phys; 1987; 14(1):1-37. PubMed ID: 3031439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the NMR behavior of white matter in bovine brain.
    Bjarnason TA; Vavasour IM; Chia CL; MacKay AL
    Magn Reson Med; 2005 Nov; 54(5):1072-81. PubMed ID: 16200557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dependence of transverse relaxation time T2 of biologic tissues on the interpulse delay time in Carr-Purcell-Meiboom-Gill (CPMG) measurements.
    Shioya S; Kurita D; Haida M; Fukuzaki M; Tanigaki T; Kutsuzawa T; Ohta Y
    Tokai J Exp Clin Med; 1997 May; 22(2):27-31. PubMed ID: 9608628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relaxation of water protons in highly concentrated aqueous protein systems studied by 1H NMR spectroscopy.
    Szuminska K; Gutsze A; Kowalczyk A
    Z Naturforsch C J Biosci; 2001; 56(11-12):1075-81. PubMed ID: 11837660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of anisotropy in nuclear magnetic resonance relaxation times of water protons in skeletal muscle.
    Kasturi SR; Chang DC; Hazlewood CF
    Biophys J; 1980 Jun; 30(3):369-81. PubMed ID: 6266530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Initial clinical results of tissue characterization by T1, T2 and proton density in nuclear magnetic resonance tomography].
    Pfannenstiel P; Just M; Higer HP; Bielke G; Meindl S; Jungke M; Grigat M; Straube U; von Seelen W; Voth D
    Rofo; 1987 May; 146(5):591-6. PubMed ID: 3035649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manifestations of slow site exchange processes in solution NMR: a continuous Gaussian exchange model.
    Schurr JM; Fujimoto BS; Diaz R; Robinson BH
    J Magn Reson; 1999 Oct; 140(2):404-31. PubMed ID: 10497047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct measurements of the dissociation-rate constant for inhibitor-enzyme complexes via the T1 rho and T2 (CPMG) methods.
    Davis DG; Perlman ME; London RE
    J Magn Reson B; 1994 Jul; 104(3):266-75. PubMed ID: 8069484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron spin-lattice relaxation mechanisms of nitroxyl radicals in ionic liquids and conventional organic liquids: temperature dependence of a thermally activated process.
    Kundu K; Kattnig DR; Mladenova BY; Grampp G; Das R
    J Phys Chem B; 2015 Mar; 119(12):4501-11. PubMed ID: 25775000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early damage to lung tissue after irradiation detected by the magnetic resonance T2 relaxation time.
    Shioya S; Tsuji C; Kurita D; Katoh H; Tsuda M; Haida M; Kawana A; Ohta Y
    Radiat Res; 1997 Oct; 148(4):359-64. PubMed ID: 9339952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dependence of the spin-spin relaxation time of water in collagen gels on collagen fiber directions.
    Takeuchi M; Sekino M; Iriguchi N; Ueno S
    Magn Reson Med Sci; 2004; 3(4):153-7. PubMed ID: 16093633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton NMR relaxation times in the normal human liver at 0.08 T.
    Keevil SF; Dolke G; Brooks AP; Armstrong P; Farthing MJ; Alstead EM; Smith MA
    Clin Radiol; 1992 May; 45(5):302-6. PubMed ID: 1516337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water proton magnetic resonance studies of normal and sickle erythrocytes. Temperature and volume dependence.
    Zipp A; James TL; Kuntz ID; Shohet SB
    Biochim Biophys Acta; 1976 Apr; 428(2):291-303. PubMed ID: 1276160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear magnetic resonance relaxation in experimental brain edema: effects of water concentration, protein concentration, and temperature.
    Kamman RL; Go KG; Brouwer W; Berendsen HJ
    Magn Reson Med; 1988 Mar; 6(3):265-74. PubMed ID: 3362061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.