BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 30411551)

  • 1. Two-channel autofluorescence analysis for oral cancer.
    Huang TT; Chen KC; Wong TY; Chen CY; Chen WC; Chen YC; Chang MH; Wu DY; Huang TY; Nioka S; Chung PC; Huang JS
    J Biomed Opt; 2018 Nov; 24(5):1-10. PubMed ID: 30411551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel quantitative analysis of autofluorescence images for oral cancer screening.
    Huang TT; Huang JS; Wang YY; Chen KC; Wong TY; Chen YC; Wu CW; Chan LP; Lin YC; Kao YH; Nioka S; Yuan SF; Chung PC
    Oral Oncol; 2017 May; 68():20-26. PubMed ID: 28438288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiclass classification of autofluorescence images of oral cavity lesions based on quantitative analysis.
    Jeng MJ; Sharma M; Chao TY; Li YC; Huang SF; Chang LB; Chow L
    PLoS One; 2020; 15(2):e0228132. PubMed ID: 32017775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autofluorescence spectroscopy for NADH and flavoproteins redox state monitoring in the isolated rat heart subjected to ischemia-reperfusion.
    Papayan G; Petrishchev N; Galagudza M
    Photodiagnosis Photodyn Ther; 2014 Sep; 11(3):400-8. PubMed ID: 24854770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-vivo Testing of Oral Mucosal Lesions with an In-house Developed Portable Imaging Device and Comparison with Spectroscopy Results.
    Sah AN; Kumar P; Pradhan A
    J Fluoresc; 2023 Jul; 33(4):1375-1383. PubMed ID: 36701084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia.
    Skala MC; Riching KM; Gendron-Fitzpatrick A; Eickhoff J; Eliceiri KW; White JG; Ramanujam N
    Proc Natl Acad Sci U S A; 2007 Dec; 104(49):19494-9. PubMed ID: 18042710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polarization gating technique extracts depth resolved fluorescence redox ratio in oral cancer diagnostics.
    Gnanatheepam E; Kanniyappan U; Dornadula K; Prakasarao A; Singaravelu G
    Photodiagnosis Photodyn Ther; 2020 Jun; 30():101757. PubMed ID: 32335189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Habits with killer instincts: in vivo analysis on the severity of oral mucosal alterations using autofluorescence spectroscopy.
    Nazeer Shaiju S; Ariya S; Asish R; Salim Haris P; Anita B; Arun Kumar G; Jayasree RS
    J Biomed Opt; 2011 Aug; 16(8):087006. PubMed ID: 21895333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of mitochondrial NADH and FAD autofluorescence in live cells.
    Bartolomé F; Abramov AY
    Methods Mol Biol; 2015; 1264():263-70. PubMed ID: 25631020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic Study of Time-Varying Optical Redox Ratio in NADH/FAD Solution.
    Lim SY; Jang JI; Yoon H; Kim HM
    J Phys Chem B; 2022 Dec; 126(47):9840-9849. PubMed ID: 36399328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid changes in NADH and flavin autofluorescence in rat cardiac trabeculae reveal large mitochondrial complex II reserve capacity.
    Wüst RC; Helmes M; Stienen GJ
    J Physiol; 2015 Apr; 593(8):1829-40. PubMed ID: 25640645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal excitation-emission wavelengths for autofluorescence diagnosis of bladder tumors.
    Zheng W; Lau W; Cheng C; Soo KC; Olivo M
    Int J Cancer; 2003 Apr; 104(4):477-81. PubMed ID: 12584746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-Photon Autofluorescence Imaging of Fixed Tissues: Feasibility and Potential Values for Biomedical Applications.
    Li LZ; Masek M; Wang T; Xu HN; Nioka S; Baur JA; Ragan TM
    Adv Exp Med Biol; 2020; 1232():375-381. PubMed ID: 31893434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Autofluorescence visualization of the oral malignant lesions].
    Krikheli NI; Pozdnjakova TI; Bulgakova NN
    Stomatologiia (Mosk); 2021; 100(6):86-90. PubMed ID: 34953195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo autofluorescence spectroscopy of oral premalignant and malignant lesions: distortion of fluorescence intensity by submucous fibrosis.
    Tsai T; Chen HM; Wang CY; Tsai JC; Chen CT; Chiang CP
    Lasers Surg Med; 2003; 33(1):40-7. PubMed ID: 12866120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autofluorescence spectroscopy in redox monitoring across cell confluencies.
    Yong D; Abdul Rahim AA; Thwin CS; Chen S; Zhai W; Win Naing M
    PLoS One; 2019; 14(12):e0226757. PubMed ID: 31851724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo monitoring the changes of interstitial pH and FAD/NADH ratio by fluorescence spectroscopy in healing skin wounds.
    Mokrý M; Gál P; Vidinský B; Kusnír J; Dubayová K; Mozes S; Sabo J
    Photochem Photobiol; 2006; 82(3):793-7. PubMed ID: 16435883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the Redox Status of Mitochondria Through the NADH/FAD
    Chi H; Bhosale G; Duchen MR
    Methods Mol Biol; 2022; 2497():313-318. PubMed ID: 35771452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of Antitumor Activity of Hesperetin-Loaded Nanoparticles Against DMBA-Induced Oral Carcinogenesis Based on Tissue Autofluorescence Spectroscopy and Multivariate Analysis.
    Gurushankar K; Nazeer SS; Jayasree RS; Krishnakumar N
    J Fluoresc; 2015 Jul; 25(4):931-9. PubMed ID: 25948235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The status of in vivo autofluorescence spectroscopy and imaging for oral oncology.
    De Veld DC; Witjes MJ; Sterenborg HJ; Roodenburg JL
    Oral Oncol; 2005 Feb; 41(2):117-31. PubMed ID: 15695112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.