These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 30411879)

  • 1. Flexible Superwettable Tapes for On-Site Detection of Heavy Metals.
    He X; Xu T; Gao W; Xu LP; Pan T; Zhang X
    Anal Chem; 2018 Dec; 90(24):14105-14110. PubMed ID: 30411879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superwettable Electrochemical Biosensor toward Detection of Cancer Biomarkers.
    Xu T; Song Y; Gao W; Wu T; Xu LP; Zhang X; Wang S
    ACS Sens; 2018 Jan; 3(1):72-78. PubMed ID: 29308651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible and Superwettable Bands as a Platform toward Sweat Sampling and Sensing.
    He X; Xu T; Gu Z; Gao W; Xu LP; Pan T; Zhang X
    Anal Chem; 2019 Apr; 91(7):4296-4300. PubMed ID: 30880389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superwettable Microchips as a Platform toward Microgravity Biosensing.
    Xu T; Shi W; Huang J; Song Y; Zhang F; Xu LP; Zhang X; Wang S
    ACS Nano; 2017 Jan; 11(1):621-626. PubMed ID: 27992718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid and Controllable Design of Robust Superwettable Microchips by a Click Reaction for Efficient
    Huang J; Yang H; Mao J; Guo F; Cheng Y; Chen Z; Wang X; Li X; Lai Y
    ACS Biomater Sci Eng; 2019 Nov; 5(11):6186-6195. PubMed ID: 33405526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superwettable microchips with improved spot homogeneity toward sensitive biosensing.
    Chen Y; Xu LP; Meng J; Deng S; Ma L; Zhang S; Zhang X; Wang S
    Biosens Bioelectron; 2018 Apr; 102():418-424. PubMed ID: 29175217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioinspired superwettable micropatterns for biosensing.
    Xu T; Xu LP; Zhang X; Wang S
    Chem Soc Rev; 2019 Jun; 48(12):3153-3165. PubMed ID: 31093627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Triple-Indicator-Based Multidimensional Colorimetric Sensing Platform for Heavy Metal Ion Detections.
    Idros N; Chu D
    ACS Sens; 2018 Sep; 3(9):1756-1764. PubMed ID: 30193067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AIE-based superwettable microchips for evaporation and aggregation induced fluorescence enhancement biosensing.
    Chen Y; Min X; Zhang X; Zhang F; Lu S; Xu LP; Lou X; Xia F; Zhang X; Wang S
    Biosens Bioelectron; 2018 Jul; 111():124-130. PubMed ID: 29660583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A preconcentration procedure for copper, nickel and chromium ions in some food and environmental samples on modified Diaion SP-850.
    Shokrolahi A; Ghaedi M; Shabani R; Montazerozohori M; Chehreh F; Soylak M; Alipour S
    Food Chem Toxicol; 2010 Feb; 48(2):482-9. PubMed ID: 19883718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Demonstrating PM
    Maina EG; Gachanja AN; Gatari MJ; Price H
    Environ Monit Assess; 2018 Mar; 190(4):251. PubMed ID: 29582158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Historical trends (1998-2012) of nickel (Ni), copper (Cu) and chromium (Cr) concentrations in marine sediments at four locations in the Northern Adriatic Sea.
    Traven L; Furlan N; Cenov A
    Mar Pollut Bull; 2015 Sep; 98(1-2):289-94. PubMed ID: 26146134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lead, mercury, cadmium, chromium, nickel, copper, zinc, calcium, iron, manganese and chromium (VI) levels in Nigeria and United States of America cement dust.
    Ogunbileje JO; Sadagoparamanujam VM; Anetor JI; Farombi EO; Akinosun OM; Okorodudu AO
    Chemosphere; 2013 Mar; 90(11):2743-9. PubMed ID: 23261125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental and health implications of trace metal concentrations in street dusts around some electronic repair workshops in Owerri, Southeastern Nigeria.
    Ibe FC; Opara AI; Ibe BO; Adindu BC; Ichu BC
    Environ Monit Assess; 2018 Nov; 190(12):696. PubMed ID: 30392014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Content of Heavy Metal in the Dust of Leisure Squares and Its Health Risk Assessment-A Case Study of Yanta District in Xi'an.
    Shao T; Pan L; Chen Z; Wang R; Li W; Qin Q; He Y
    Int J Environ Res Public Health; 2018 Feb; 15(3):. PubMed ID: 29495319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue specific metal characterization of selected fish species in Pakistan.
    Ahmed M; Ahmad T; Liaquat M; Abbasi KS; Farid IB; Jahangir M
    Environ Monit Assess; 2016 Apr; 188(4):212. PubMed ID: 26951449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial distribution of heavy metals in top soils around the industrial facilities of Cromatos de México, Tultitlan Mexico.
    Morton-Bermea O; Hernández-Álvarez E; Lozano R; Guzmán-Morales J; Martínez G
    Bull Environ Contam Toxicol; 2010 Nov; 85(5):520-4. PubMed ID: 20936254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Risk assessment of heavy metal contamination in shrimp farming in Mai Po Nature Reserve, Hong Kong.
    Cheung KC; Wong MH
    Environ Geochem Health; 2006; 28(1-2):27-36. PubMed ID: 16528597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial distribution and transport characteristics of heavy metals around an antimony mine area in central China.
    Li X; Yang H; Zhang C; Zeng G; Liu Y; Xu W; Wu Y; Lan S
    Chemosphere; 2017 Mar; 170():17-24. PubMed ID: 27951447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental Status and geochemical assessment Sediments of Lake Skadar, Montenegro.
    Kastratović V; Jaćimović Ž; Bigović M; Đurović D; Krivokapić S
    Environ Monit Assess; 2016 Aug; 188(8):449. PubMed ID: 27384227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.