These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 30411914)
1. Quantitative Theory for the Growth Rate and Amplitude of the Compressible Richtmyer-Meshkov Instability at all Density Ratios. Zhang Q; Deng S; Guo W Phys Rev Lett; 2018 Oct; 121(17):174502. PubMed ID: 30411914 [TBL] [Abstract][Full Text] [Related]
2. Effects of surface tension and viscosity on the growth rates of Rayleigh-Taylor and Richtmyer-Meshkov instabilities. Sohn SI Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):055302. PubMed ID: 20365034 [TBL] [Abstract][Full Text] [Related]
3. Simple potential-flow model of Rayleigh-Taylor and Richtmyer-Meshkov instabilities for all density ratios. Sohn SI Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026301. PubMed ID: 12636794 [TBL] [Abstract][Full Text] [Related]
4. Physics of reshock and mixing in single-mode Richtmyer-Meshkov instability. Schilling O; Latini M; Don WS Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):026319. PubMed ID: 17930154 [TBL] [Abstract][Full Text] [Related]
5. Growth rate of the linear Richtmyer-Meshkov instability when a shock is reflected. Wouchuk JG Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 2):056303. PubMed ID: 11415002 [TBL] [Abstract][Full Text] [Related]
6. Measurement of a Richtmyer-Meshkov Instability at an Air-SF_{6} Interface in a Semiannular Shock Tube. Ding J; Si T; Yang J; Lu X; Zhai Z; Luo X Phys Rev Lett; 2017 Jul; 119(1):014501. PubMed ID: 28731767 [TBL] [Abstract][Full Text] [Related]
7. Analytical scalings of the linear Richtmyer-Meshkov instability when a shock is reflected. Campos FC; Wouchuk JG Phys Rev E; 2016 May; 93(5):053111. PubMed ID: 27300982 [TBL] [Abstract][Full Text] [Related]
8. Renormalization group approach to interfacial motion in incompressible Richtmyer-Meshkov instability. Matsuoka C Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036320. PubMed ID: 21230184 [TBL] [Abstract][Full Text] [Related]
9. Analytical scalings of the linear Richtmyer-Meshkov instability when a rarefaction is reflected. Cobos-Campos F; Wouchuk JG Phys Rev E; 2017 Jul; 96(1-1):013102. PubMed ID: 29347243 [TBL] [Abstract][Full Text] [Related]
10. Vortex model and simulations for Rayleigh-Taylor and Richtmyer-Meshkov instabilities. Sohn SI Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 2):036703. PubMed ID: 15089438 [TBL] [Abstract][Full Text] [Related]
11. Numerical study of initial perturbation effects on Richtmyer-Meshkov instability in nonuniform flows. Xiao JX; Bai JS; Wang T Phys Rev E; 2016 Jul; 94(1-1):013112. PubMed ID: 27575222 [TBL] [Abstract][Full Text] [Related]
12. Vortex core dynamics and singularity formations in incompressible Richtmyer-Meshkov instability. Matsuoka C; Nishihara K Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):026304. PubMed ID: 16605451 [TBL] [Abstract][Full Text] [Related]
14. Richtmyer-Meshkov instability: theory of linear and nonlinear evolution. Nishihara K; Wouchuk JG; Matsuoka C; Ishizaki R; Zhakhovsky VV Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1916):1769-807. PubMed ID: 20211883 [TBL] [Abstract][Full Text] [Related]
15. Nonlinear evolution of an interface in the Richtmyer-Meshkov instability. Matsuoka C; Nishihara K; Fukuda Y Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 2):036301. PubMed ID: 12689159 [TBL] [Abstract][Full Text] [Related]
16. An experimental study of the Richtmyer-Meshkov instability in microgravity. Niederhaus CE; Jacobs JW Ann N Y Acad Sci; 2004 Nov; 1027():403-13. PubMed ID: 15644371 [TBL] [Abstract][Full Text] [Related]
17. High-amplitude single-mode perturbation evolution at the Richtmyer-Meshkov instability. Jourdan G; Houas L Phys Rev Lett; 2005 Nov; 95(20):204502. PubMed ID: 16384063 [TBL] [Abstract][Full Text] [Related]
18. Investigation of the Richtmyer-Meshkov instability with double perturbation interface in nonuniform flows. Bai JS; Liu JH; Wang T; Zou LY; Li P; Tan DW Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):056302. PubMed ID: 20866317 [TBL] [Abstract][Full Text] [Related]
19. Viscous Rayleigh-Taylor and Richtmyer-Meshkov instabilities in the presence of a horizontal magnetic field. Sun YB; Wang C Phys Rev E; 2020 May; 101(5-1):053110. PubMed ID: 32575244 [TBL] [Abstract][Full Text] [Related]
20. Density dependence of a Zufiria-type model for Rayleigh-Taylor bubble fronts. Sohn SI Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):045301. PubMed ID: 15600452 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]