These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 30411965)

  • 1. Laser Power Stabilization beyond the Shot Noise Limit Using Squeezed Light.
    Vahlbruch H; Wilken D; Mehmet M; Willke B
    Phys Rev Lett; 2018 Oct; 121(17):173601. PubMed ID: 30411965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High power and ultra-low-noise photodetector for squeezed-light enhanced gravitational wave detectors.
    Grote H; Weinert M; Adhikari RX; Affeldt C; Kringel V; Leong J; Lough J; Lück H; Schreiber E; Strain KA; Vahlbruch H; Wittel H
    Opt Express; 2016 Sep; 24(18):20107-18. PubMed ID: 27607619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser power stabilization using optical ac coupling and its quantum and technical limits.
    Kwee P; Willke B; Danzmann K
    Appl Opt; 2009 Oct; 48(28):5423-31. PubMed ID: 19798384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser power stabilization for second-generation gravitational wave detectors.
    Seifert F; Kwee P; Heurs M; Willke B; Danzmann K
    Opt Lett; 2006 Jul; 31(13):2000-2. PubMed ID: 16770412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Squeezing-enhanced heterodyne detection of 10  Hz atto-Watt optical signals.
    Xie B; Feng S
    Opt Lett; 2018 Dec; 43(24):6073-6076. PubMed ID: 30548007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-precision cavity spectroscopy using high-frequency squeezed light.
    Junker J; Wilken D; Huntington E; Heurs M
    Opt Express; 2021 Feb; 29(4):6053-6068. PubMed ID: 33726135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Squeezed vacuum phase control at 2  μm.
    Yap MJ; Gould DW; McRae TG; Altin PA; Kijbunchoo N; Mansell GL; Ward RL; Shaddock DA; Slagmolen BJJ; McClelland DE
    Opt Lett; 2019 Nov; 44(21):5386-5389. PubMed ID: 31675014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fundamental limits of laser power stabilization via a radiation pressure transfer scheme.
    Trad Nery M; Danilishin SL; Venneberg JR; Willke B
    Opt Lett; 2020 Jul; 45(14):3969-3972. PubMed ID: 32667330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of amplitude modulation with squeezed light for sensitivity beyond the shot-noise limit.
    Xiao M; Wu LA; Kimble HJ
    Opt Lett; 1988 Jun; 13(6):476-8. PubMed ID: 19745937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrahigh-frequency stabilization of a diode-pumped Nd:YAG laser with a high-power-acceptance photodetector.
    Uehara N; Ueda K
    Opt Lett; 1994 May; 19(10):728-30. PubMed ID: 19844426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stabilization improvement of the squeezed optical fields using a high signal-to-noise ratio bootstrap photodetector.
    Wang X; Wu L; Liang S; Cheng J; Liu Y; Zhou Y; Qin J; Yan Z; Jia X
    Opt Express; 2022 Dec; 30(26):47826-47835. PubMed ID: 36558701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shot-noise-limited laser power stabilization for the AEI 10  m Prototype interferometer.
    Junker J; Oppermann P; Willke B
    Opt Lett; 2017 Feb; 42(4):755-758. PubMed ID: 28198864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Demonstration of a squeezed-light-enhanced power- and signal-recycled Michelson interferometer.
    Vahlbruch H; Chelkowski S; Hage B; Franzen A; Danzmann K; Schnabel R
    Phys Rev Lett; 2005 Nov; 95(21):211102. PubMed ID: 16384128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alignment sensing and control for squeezed vacuum states of light.
    Schreiber E; Dooley KL; Vahlbruch H; Affeldt C; Bisht A; Leong JR; Lough J; Prijatelj M; Slutsky J; Was M; Wittel H; Danzmann K; Grote H
    Opt Express; 2016 Jan; 24(1):146-52. PubMed ID: 26832246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subhertz interferometry at the quantum noise limit.
    Yang P; Xie B; Feng S
    Opt Lett; 2019 May; 44(9):2366-2369. PubMed ID: 31042224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental Demonstration of Higher Precision Weak-Value-Based Metrology Using Power Recycling.
    Wang YT; Tang JS; Hu G; Wang J; Yu S; Zhou ZQ; Cheng ZD; Xu JS; Fang SZ; Wu QL; Li CF; Guo GC
    Phys Rev Lett; 2016 Dec; 117(23):230801. PubMed ID: 27982616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-power and near-shot-noise-limited intensity noise all-fiber single-frequency 1.5 μm MOPA laser.
    Yang C; Guan X; Zhao Q; Wu B; Feng Z; Gan J; Cheng H; Peng M; Yang Z; Xu S
    Opt Express; 2017 Jun; 25(12):13324-13331. PubMed ID: 28788868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser power noise detection at the quantum-noise limit of 32 A photocurrent.
    Kwee P; Willke B; Danzmann K
    Opt Lett; 2011 Sep; 36(18):3563-5. PubMed ID: 21931391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency-Dependent Squeezing for Advanced LIGO.
    McCuller L; Whittle C; Ganapathy D; Komori K; Tse M; Fernandez-Galiana A; Barsotti L; Fritschel P; MacInnis M; Matichard F; Mason K; Mavalvala N; Mittleman R; Yu H; Zucker ME; Evans M
    Phys Rev Lett; 2020 May; 124(17):171102. PubMed ID: 32412252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of two-mode bright squeezed light using a noise-suppressed amplified diode laser.
    Zhang Y; Hayasaka K; Kasai K
    Opt Express; 2006 Dec; 14(26):13083-8. PubMed ID: 19532204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.