These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
86 related articles for article (PubMed ID: 3041205)
1. RecA-independent mutagenesis in Escherichia coli may be subject to glucose repression. Thomas SM; MacPhee DG Mutat Res; 1987 Sep; 180(1):67-73. PubMed ID: 3041205 [TBL] [Abstract][Full Text] [Related]
2. Catabolite repression of SOS-dependent and SOS-independent spontaneous mutagenesis in stationary-phase Escherichia coli. MacPhee DG; Ambrose M Mutat Res; 2010 Apr; 686(1-2):84-9. PubMed ID: 20138895 [TBL] [Abstract][Full Text] [Related]
3. Frameshift mutagenesis by 9-aminoacridine and ICR191 in Escherichia coli: effects of uvrB, recA and lexA mutations and of plasmid pKM101. Thomas SM; MacPhee DG Mutat Res; 1985 Aug; 151(1):49-56. PubMed ID: 3894955 [TBL] [Abstract][Full Text] [Related]
4. On the glucose effect in acridine-induced frameshift mutagenesis in Escherichia coli. Pons FW; Müller P Mutat Res; 1989 Jan; 210(1):71-7. PubMed ID: 2535890 [TBL] [Abstract][Full Text] [Related]
5. Frameshift mutagenesis by 9-aminoacridine: antimutagenic effects of adenosine compounds. Kopsidas G; MacPhee DG Mutat Res; 1996 Jun; 352(1-2):135-42. PubMed ID: 8676902 [TBL] [Abstract][Full Text] [Related]
6. RecA-independent mutagenesis in Escherichia coli: effects of umuC and mucB mutations. Thomas SM; MacPhee DG Mutagenesis; 1986 May; 1(3):191-4. PubMed ID: 2842574 [TBL] [Abstract][Full Text] [Related]
7. Glucose inhibition of mutagenesis by 9-aminoacridine in Salmonella typhimurium. Kopsidas G; MacPhee DG Mutat Res; 1993 Jan; 285(1):101-8. PubMed ID: 7678123 [TBL] [Abstract][Full Text] [Related]
8. Mutagenesis by 9-aminoacridine in Salmonella typhimurium: inhibition by glucose and other PTS class A carbon sources. Kopsidas G; MacPhee DG Mutat Res; 1994 Apr; 306(2):111-7. PubMed ID: 7512209 [TBL] [Abstract][Full Text] [Related]
9. A source of artifact in the lacZ reversion assay in Escherichia coli. Hoffmann GR; Gray CL; Lange PB; Marando CI Mutat Res Genet Toxicol Environ Mutagen; 2015 Jun; 784-785():23-30. PubMed ID: 26046973 [TBL] [Abstract][Full Text] [Related]
10. Mutagenesis and anti-mutagenesis in Salmonella: influence of ethionine and caffeine on yields of mutations induced by 2-aminopurine and 9-aminoacridine. MacPhee DG; Nagel BA; Podger DM Mutat Res; 1983 Nov; 111(3):283-93. PubMed ID: 6358877 [TBL] [Abstract][Full Text] [Related]
11. Frameshift mutations produced by 9-aminoacridine in wild-type, uvrA and recA strains of Escherichia coli; specificity within a hotspot. Acharya N; Abu-Nasr NF; Kawaguchi G; Imai M; Yamamoto K J Radiat Res; 2007 Sep; 48(5):361-8. PubMed ID: 17611351 [TBL] [Abstract][Full Text] [Related]
12. Identification of two new genetically active regions associated with the osmZ locus of Escherichia coli: role in regulation of proU expression and mutagenic effect of cya, the structural gene for adenylate cyclase. Barr GC; Ni Bhriain N; Dorman CJ J Bacteriol; 1992 Feb; 174(3):998-1006. PubMed ID: 1732232 [TBL] [Abstract][Full Text] [Related]
13. Cyclic 3':5'-adenosine monophosphate in Escherichia coli during transient and catabolite repression. Wayne PK; Rosen OM Proc Natl Acad Sci U S A; 1974 Apr; 71(4):1436-40. PubMed ID: 4364540 [TBL] [Abstract][Full Text] [Related]
14. Strong antimutagenic effect of caffeine on 9-aminoacridine-induced frameshift mutagenesis in Escherichia coli K12. Pons FW; Müller P Mutagenesis; 1990 Jul; 5(4):363-6. PubMed ID: 2204785 [TBL] [Abstract][Full Text] [Related]
15. Frameshift mutations induced by three classes of acridines in the lacZ reversion assay in Escherichia coli: potency of responses and relationship to slipped mispairing models. Hoffmann GR; Calciano MA; Lawless BM; Mahoney KM Environ Mol Mutagen; 2003; 42(2):111-21. PubMed ID: 12929124 [TBL] [Abstract][Full Text] [Related]
16. The Haemophilus influenzae adenylate cyclase gene: cloning, sequence, and essential role in competence. Dorocicz IR; Williams PM; Redfield RJ J Bacteriol; 1993 Nov; 175(22):7142-9. PubMed ID: 8226661 [TBL] [Abstract][Full Text] [Related]
17. Isolation and characterization of cAMP suppressor mutants of Escherichia coli K12. Melton T; Snow LL; Freitag CS; Dobrogosz WJ Mol Gen Genet; 1981; 182(3):480-9. PubMed ID: 6272064 [TBL] [Abstract][Full Text] [Related]
18. Catabolite repressors are potent antimutagens in Escherichia coli plate incorporation assays: experiments with glucose, glucose-6-phosphate and methyl-alpha-D-glucopyranoside. Ambrose M; MacPhee DG Mutat Res; 1998 Feb; 398(1-2):175-82. PubMed ID: 9626977 [TBL] [Abstract][Full Text] [Related]
19. Selective Inbreeding: Genetic Crosses Drive Apparent Adaptive Mutation in the Cairns-Foster System of Nguyen A; Maisnier-Patin S; Yamayoshi I; Kofoid E; Roth JR Genetics; 2020 Feb; 214(2):333-354. PubMed ID: 31810989 [TBL] [Abstract][Full Text] [Related]
20. Evidence that F plasmid transfer replication underlies apparent adaptive mutation. Galitski T; Roth JR Science; 1995 Apr; 268(5209):421-3. PubMed ID: 7716546 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]