BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 3041231)

  • 1. Variable stoichiometry of proton pumping by the mitochondrial respiratory chain.
    Murphy MP; Brand MD
    Nature; 1987 Sep 10-16; 329(6135):170-2. PubMed ID: 3041231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane-potential-dependent changes in the stoichiometry of charge translocation by the mitochondrial electron transport chain.
    Murphy MP; Brand MD
    Eur J Biochem; 1988 May; 173(3):637-44. PubMed ID: 2836195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steady-state H+/O stoichiometry of liver mitochondria.
    Al-Shawi MK; Brand MD
    Biochem J; 1981 Dec; 200(3):539-46. PubMed ID: 6282251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The functional catalytic unit involved in proton pumping by rat liver cytochrome-c reductase and by cytochrome-c oxidase.
    Moody AJ; Rich PR
    Biochim Biophys Acta; 1989 Jan; 973(1):29-34. PubMed ID: 2536551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The upper and lower limits of the mechanistic stoichiometry of mitochondrial oxidative phosphorylation. Stoichiometry of oxidative phosphorylation.
    Beavis AD; Lehninger AL
    Eur J Biochem; 1986 Jul; 158(2):315-22. PubMed ID: 3015613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of protonmotive force on the relative proton stoichiometries of the mitochondrial proton pumps.
    Hafner RP; Brand MD
    Biochem J; 1991 Apr; 275 ( Pt 1)(Pt 1):75-80. PubMed ID: 1708235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct measurement of the initial proton extrusion to oxygen uptake ratio accompanying succinate oxidation by rat liver mitochondria.
    Setty OH; Shrager RI; Bunow B; Reynafarje B; Lehninger AL; Hendler RW
    Biophys J; 1986 Sep; 50(3):391-404. PubMed ID: 3019443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial proton conductance and H+/O ratio are independent of electron transport rate in isolated hepatocytes.
    Porter RK; Brand MD
    Biochem J; 1995 Sep; 310 ( Pt 2)(Pt 2):379-82. PubMed ID: 7654171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of mitochondria in the pheromone- and amiodarone-induced programmed death of yeast.
    Pozniakovsky AI; Knorre DA; Markova OV; Hyman AA; Skulachev VP; Severin FF
    J Cell Biol; 2005 Jan; 168(2):257-69. PubMed ID: 15657396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effective proton conductance of the inner membrane of mitochondria from brown adipose tissue. Dependency on proton electrochemical potential gradient.
    Nicholls DG
    Eur J Biochem; 1977 Jul; 77(2):349-56. PubMed ID: 19250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperative proton-transfer reactions in the respiratory chain: redox bohr effects.
    Papa S; Guerrieri F; Izzo G
    Methods Enzymol; 1986; 126():331-43. PubMed ID: 3272339
    [No Abstract]   [Full Text] [Related]  

  • 12. The effect of mitochondrial inhibitors on membrane currents in isolated neonatal rat carotid body type I cells.
    Wyatt CN; Buckler KJ
    J Physiol; 2004 Apr; 556(Pt 1):175-91. PubMed ID: 14724184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of the proton/electron stoichiometry of mitochondrial ubiquinol:cytochrome c reductase by the membrane potential.
    Bechmann G; Weiss H
    Eur J Biochem; 1991 Jan; 195(2):431-8. PubMed ID: 1847681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous evaluation of substrate-dependent oxygen consumption rates and mitochondrial membrane potential by TMRM and safranin in cortical mitochondria.
    Chowdhury SR; Djordjevic J; Albensi BC; Fernyhough P
    Biosci Rep; 2015 Dec; 36(1):e00286. PubMed ID: 26647379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of the deleterious effects of tamoxifen on mitochondrial respiration rate and phosphorylation efficiency.
    Cardoso CM; Custódio JB; Almeida LM; Moreno AJ
    Toxicol Appl Pharmacol; 2001 Nov; 176(3):145-52. PubMed ID: 11714246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of mitochondrial resting state respiration: slip, leak, heterogeneity?
    Wojtczak L; Bogucka K; Duszyński J; Zabłocka B; Zółkiewska A
    Biochim Biophys Acta; 1990 Jul; 1018(2-3):177-81. PubMed ID: 2393656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of antitumor diarylsulfonylureas on in vivo and in vitro mitochondrial structure and functions.
    Thakar JH; Chapin C; Berg RH; Ashmun RA; Houghton PJ
    Cancer Res; 1991 Dec; 51(23 Pt 1):6286-91. PubMed ID: 1933889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromium(VI) interaction with plant and animal mitochondrial bioenergetics: a comparative study.
    Fernandes MA; Santos MS; Alpoim MC; Madeira VM; Vicente JA
    J Biochem Mol Toxicol; 2002; 16(2):53-63. PubMed ID: 11979422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mammalian complex I pumps 4 protons per 2 electrons at high and physiological proton motive force in living cells.
    Ripple MO; Kim N; Springett R
    J Biol Chem; 2013 Feb; 288(8):5374-80. PubMed ID: 23306206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the role of the membrane proton conductance in the relationship between rate of respiration and protonmotive force.
    Ghazi A
    Biochem J; 1985 Aug; 229(3):833-7. PubMed ID: 2996489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.