BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 30412869)

  • 1. Water scarcity alleviation through water footprint reduction in agriculture: The effect of soil mulching and drip irrigation.
    Nouri H; Stokvis B; Galindo A; Blatchford M; Hoekstra AY
    Sci Total Environ; 2019 Feb; 653():241-252. PubMed ID: 30412869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of virtual water flows in agriculture by changing cropping patterns using an integrated approach.
    Mehla MK; Kothari M; Singh PK; Bhakar SR; Yadav KK
    Heliyon; 2023 Dec; 9(12):e22603. PubMed ID: 38076115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of soil mulching field management, and deficit irrigation effect on productivity of watermelon varieties, and AquaCrop model validation.
    Gebeyhu B; Markos G
    Heliyon; 2023 Nov; 9(11):e21632. PubMed ID: 38027634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Socioeconomic benefits of conserving Iran's water resources through modifying agricultural practices and water management strategies.
    Karandish F
    Ambio; 2021 Oct; 50(10):1824-1840. PubMed ID: 33759107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of inter-annual variability of consumption, production, trade and climate on crop-related green and blue water footprints and inter-regional virtual water trade: A study for China (1978-2008).
    Zhuo L; Mekonnen MM; Hoekstra AY
    Water Res; 2016 May; 94():73-85. PubMed ID: 26938494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rice performance and water use efficiency under plastic mulching with drip irrigation.
    He H; Ma F; Yang R; Chen L; Jia B; Cui J; Fan H; Wang X; Li L
    PLoS One; 2013; 8(12):e83103. PubMed ID: 24340087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Field-based experimental water footprint study of sunflower growth in a semi-arid region of China.
    Qin L; Jin Y; Duan P; He H
    J Sci Food Agric; 2016 Jul; 96(9):3266-73. PubMed ID: 27004979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards quantification of the national water footprint in rice production of China: A first assessment from the perspectives of single-double rice.
    Zheng J; Wang W; Liu G; Ding Y; Cao X; Chen D; Engel BA
    Sci Total Environ; 2020 Oct; 739():140032. PubMed ID: 32758949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trade-off between blue and grey water footprint of crop production at different nitrogen application rates under various field management practices.
    Chukalla AD; Krol MS; Hoekstra AY
    Sci Total Environ; 2018 Jun; 626():962-970. PubMed ID: 29898561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monthly blue water footprint caps in a river basin to achieve sustainable water consumption: The role of reservoirs.
    Zhuo L; Hoekstra AY; Wu P; Zhao X
    Sci Total Environ; 2019 Feb; 650(Pt 1):891-899. PubMed ID: 30308863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regional water footprint assessment for a semi-arid basin in India.
    Mehla MK
    PeerJ; 2022; 10():e14207. PubMed ID: 36225910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effects of different mulching and drip irrigation patterns on photosynthetic characteristics of maize leaves in the Hetao Irrigation District, Inner Mongolia, China].
    Hu MJ; Jiang LC; Li SZ; Zhou LF; Tong C
    Ying Yong Sheng Tai Xue Bao; 2017 Dec; 28(12):3955-3964. PubMed ID: 29696891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilization of Landsat-8 data for the estimation of carrot and maize crop water footprint under the arid climate of Saudi Arabia.
    Madugundu R; Al-Gaadi KA; Tola E; Hassaballa AA; Kayad AG
    PLoS One; 2018; 13(2):e0192830. PubMed ID: 29432446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Establishing and testing a catchment water footprint framework to inform sustainable irrigation water use for an aquifer under stress.
    le Roux B; van der Laan M; Vahrmeijer T; Bristow KL; Annandale JG
    Sci Total Environ; 2017 Dec; 599-600():1119-1129. PubMed ID: 28511357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating High Resolution Water Footprint and GIS for Promoting Water Efficiency in the Agricultural Sector: A Case Study of Plantation Crops in the Jordan Valley.
    Shtull-Trauring E; Aviani I; Avisar D; Bernstein N
    Front Plant Sci; 2016; 7():1877. PubMed ID: 28018408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of water footprint combined with a unified virtual crop pattern to evaluate crop water productivity in grain production in China.
    Wang YB; Wu PT; Engel BA; Sun SK
    Sci Total Environ; 2014 Nov; 497-498():1-9. PubMed ID: 25112819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial pattern characteristics of water footprint for maize production in Northeast China.
    Duan P; Qin L; Wang Y; He H
    J Sci Food Agric; 2016 Jan; 96(2):561-8. PubMed ID: 25654998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deficit saline water irrigation under reduced tillage and residue mulch improves soil health in sorghum-wheat cropping system in semi-arid region.
    Soni PG; Basak N; Rai AK; Sundha P; Narjary B; Kumar P; Yadav G; Kumar S; Yadav RK
    Sci Rep; 2021 Jan; 11(1):1880. PubMed ID: 33479311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crop and water productivity and profitability of broccoli (Brassica oleracea L. var. italica) under gravity drip irrigation with mulching condition in a humid sub-tropical climate.
    Patra SK; Poddar R; Pramanik S; Gaber A; Hossain A
    PLoS One; 2022; 17(3):e0265439. PubMed ID: 35298537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An assessment of the urban water footprint and blue water scarcity: A case study for Van (Turkey).
    Yerli C; Sahin U
    Braz J Biol; 2021; 82():e249745. PubMed ID: 34231666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.