BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 30412885)

  • 1. Chromium bioavailability in aquatic systems impacted by tannery wastewaters. Part 1: Understanding chromium accumulation by indigenous chironomids.
    Vignati DAL; Ferrari BJD; Roulier JL; Coquery M; Szalinska E; Bobrowski A; Czaplicka A; Kownacki A; Dominik J
    Sci Total Environ; 2019 Feb; 653():401-408. PubMed ID: 30412885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromium bioavailability in aquatic systems impacted by tannery wastewaters. Part 2: New insights from laboratory and in situ testing with Chironomus riparius Meigen (Diptera, Chironomidae).
    Ferrari BJD; Vignati DAL; Roulier JL; Coquery M; Szalinska E; Bobrowski A; Czaplicka A; Dominik J
    Sci Total Environ; 2019 Feb; 653():1-9. PubMed ID: 30390548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationships among total recoverable and reactive metals and metalloid in St. Lawrence River sediment: bioaccumulation by chironomids and implications for ecological risk assessment.
    Desrosiers M; Gagnon C; Masson S; Martel L; Babut MP
    Sci Total Environ; 2008 Jan; 389(1):101-14. PubMed ID: 17900660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting trace metal bioavailability to chironomids in sediments by diffusive gradients in thin films.
    He Y; Guo C; Lv J; Hou S; Zhang Y; Zhang Y; Xu J
    Sci Total Environ; 2018 Sep; 636():134-141. PubMed ID: 29704710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling geochemical and biological approaches to assess the availability of cadmium in freshwater sediment.
    Dabrin A; Durand CL; Garric J; Geffard O; Ferrari BJ; Coquery M
    Sci Total Environ; 2012 May; 424():308-15. PubMed ID: 22446110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of diffusive gradients in thin films (DGT) and simultaneously extracted metals (SEM) for evaluating bioavailability of metal contaminants in the sediments of Taihu Lake, China.
    Zhang Y; Yang J; Simpson SL; Wang Y; Zhu L
    Ecotoxicol Environ Saf; 2019 Nov; 184():109627. PubMed ID: 31509782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of dynamic mobilization of trace metals in sediments using DGT and comparison with bioaccumulation in Chironomus riparius: first results of an experimental study.
    Roulier JL; Tusseau-Vuillemin MH; Coquery M; Geffard O; Garric J
    Chemosphere; 2008 Jan; 70(5):925-32. PubMed ID: 17888490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual diffusive gradients in the thin films (DGT) probes provide insights into speciation and mobility of sediment chromium (Cr) from the Xizhi River basin, South China.
    Gao L; Li R; Liang Z; Wu Q; Hou L; Chen J; Zhao P
    J Hazard Mater; 2022 Aug; 436():129229. PubMed ID: 35739749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromium Contamination from Tanning Industries and Phytoremediation Potential of Native Plants: A Study of Savar Tannery Industrial Estate in Dhaka, Bangladesh.
    Hasan SMM; Akber MA; Bahar MM; Islam MA; Akbor MA; Siddique MAB; Islam MA
    Bull Environ Contam Toxicol; 2021 Jun; 106(6):1024-1032. PubMed ID: 33991212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mobility of chromium in sediments dominated by macrophytes and cyanobacteria in different zones of Lake Taihu.
    Fan X; Ding S; Chen M; Gao S; Fu Z; Gong M; Wang Y; Zhang C
    Sci Total Environ; 2019 May; 666():994-1002. PubMed ID: 30970505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of chironomid larvae and Limnodrilus hoffmeisteri bioturbation on the distribution and flux of chromium at the sediment-water interface.
    Cheng D; Song J; Zhao X; Wang S; Lin Q; Peng J; Su P; Deng W
    J Environ Manage; 2019 Sep; 245():151-159. PubMed ID: 31150906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the bioavailability of trace metals in surface sediments: a combined geochemical and biological approach.
    Roosa S; Prygiel E; Lesven L; Wattiez R; Gillan D; Ferrari BJD; Criquet J; Billon G
    Environ Sci Pollut Res Int; 2016 Jun; 23(11):10679-10692. PubMed ID: 26884242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of chromium contamination in water, sediment and vegetation caused by the tannery of Jijel (Algeria): a case study.
    Leghouchi E; Laib E; Guerbet M
    Environ Monit Assess; 2009 Jun; 153(1-4):111-7. PubMed ID: 18512125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous reduction of Cr(VI) and oxidation of As(III) by Bacillus firmus TE7 isolated from tannery effluent.
    Bachate SP; Nandre VS; Ghatpande NS; Kodam KM
    Chemosphere; 2013 Feb; 90(8):2273-8. PubMed ID: 23182111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromium accumulation and biomarker responses in the Neotropical fish Prochilodus lineatus caged in a river under the influence of tannery activities.
    Lunardelli B; Cabral MT; Vieira CED; Oliveira LF; Risso WE; Meletti PC; Martinez CBR
    Ecotoxicol Environ Saf; 2018 May; 153():188-194. PubMed ID: 29433087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromium geochemistry and bioaccumulation in sediments from the lower Hackensack River, New Jersey.
    Martello L; Fuchsman P; Sorensen M; Magar V; Wenning RJ
    Arch Environ Contam Toxicol; 2007 Oct; 53(3):337-50. PubMed ID: 17657462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioreduction of Cr(VI) by Indigenously Isolated Bacterial Strains from Stream Sediment Contaminated with Tannery Waste.
    da Silveira LF; Viscardi M; Longoni L; Sampaio J; Lisboa B; Beneduzi A
    Curr Microbiol; 2020 Jul; 77(7):1262-1270. PubMed ID: 32128606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating the diffusive gradients in thin films technique for the prediction of metal bioaccumulation in plants grown in river sediments.
    Song Z; Shan B; Tang W
    J Hazard Mater; 2018 Feb; 344():360-368. PubMed ID: 29080489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of chromium(III) from tannery wastewater using activated carbon from sugar industrial waste.
    Fahim NF; Barsoum BN; Eid AE; Khalil MS
    J Hazard Mater; 2006 Aug; 136(2):303-9. PubMed ID: 16442717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromium distribution in an Amazonian river exposed to tannery effluent.
    de Sousa EA; Luz CC; de Carvalho DP; Dorea CC; de Holanda IB; Manzatto ÂG; Bastos WR
    Environ Sci Pollut Res Int; 2016 Nov; 23(21):22019-22026. PubMed ID: 27539473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.