These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

682 related articles for article (PubMed ID: 30413011)

  • 1. Multi-Functional Soft Strain Sensors for Wearable Physiological Monitoring.
    Hughes J; Iida F
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30413011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible Electronics toward Wearable Sensing.
    Gao W; Ota H; Kiriya D; Takei K; Javey A
    Acc Chem Res; 2019 Mar; 52(3):523-533. PubMed ID: 30767497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of ground reaction forces and joint moments on the basis on plantar pressure insoles and wearable sensors for joint angle measurement.
    Ostaszewski M; Pauk J
    Technol Health Care; 2018; 26(S2):605-612. PubMed ID: 29843283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation and Application of a Customizable Wireless Platform: A Body Sensor Network for Unobtrusive Gait Analysis in Everyday Life.
    Lueken M; Mueller L; Decker MG; Bollheimer C; Leonhardt S; Ngo C
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33419278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-sensitive microfluidic wearable strain sensor for intraocular pressure monitoring.
    Agaoglu S; Diep P; Martini M; Kt S; Baday M; Araci IE
    Lab Chip; 2018 Nov; 18(22):3471-3483. PubMed ID: 30276409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of data fusion techniques and technologies for wearable health monitoring.
    King RC; Villeneuve E; White RJ; Sherratt RS; Holderbaum W; Harwin WS
    Med Eng Phys; 2017 Apr; 42():1-12. PubMed ID: 28237714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gait Pattern Analysis: Integration of a Highly Sensitive Flexible Pressure Sensor on a Wireless Instrumented Insole.
    Das PS; Skaf D; Rose L; Motaghedi F; Carmichael TB; Rondeau-Gagné S; Ahamed MJ
    Sensors (Basel); 2024 May; 24(9):. PubMed ID: 38733050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-performance wearable strain sensors based on fragmented carbonized melamine sponges for human motion detection.
    Fang X; Tan J; Gao Y; Lu Y; Xuan F
    Nanoscale; 2017 Nov; 9(45):17948-17956. PubMed ID: 29125167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. User Identification from Gait Analysis Using Multi-Modal Sensors in Smart Insole.
    Choi SI; Moon J; Park HC; Choi ST
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31480467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Systematic Approach to the Design and Characterization of A Smart Insole for Detecting Vertical Ground Reaction Force (vGRF) in Gait Analysis.
    Tahir AM; Chowdhury MEH; Khandakar A; Al-Hamouz S; Abdalla M; Awadallah S; Reaz MBI; Al-Emadi N
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32053914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Achievements and Challenges for Real-Time Sensing of Analytes in Sweat within Wearable Platforms.
    Brothers MC; DeBrosse M; Grigsby CC; Naik RR; Hussain SM; Heikenfeld J; Kim SS
    Acc Chem Res; 2019 Feb; 52(2):297-306. PubMed ID: 30688433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spider-Web-Inspired Stretchable Graphene Woven Fabric for Highly Sensitive, Transparent, Wearable Strain Sensors.
    Liu X; Liu D; Lee JH; Zheng Q; Du X; Zhang X; Xu H; Wang Z; Wu Y; Shen X; Cui J; Mai YW; Kim JK
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):2282-2294. PubMed ID: 30582684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Printed, Soft, Nanostructured Strain Sensors for Monitoring of Structural Health and Human Physiology.
    Herbert R; Lim HR; Yeo WH
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):25020-25030. PubMed ID: 32393022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wearable Sensors to Monitor, Enable Feedback, and Measure Outcomes of Activity and Practice.
    Dobkin BH; Martinez C
    Curr Neurol Neurosci Rep; 2018 Oct; 18(12):87. PubMed ID: 30293160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent developments in sensors for wearable device applications.
    Cheng Y; Wang K; Xu H; Li T; Jin Q; Cui D
    Anal Bioanal Chem; 2021 Oct; 413(24):6037-6057. PubMed ID: 34389877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controllably Enhancing Stretchability of Highly Sensitive Fiber-Based Strain Sensors for Intelligent Monitoring.
    Liao X; Wang W; Wang L; Tang K; Zheng Y
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):2431-2440. PubMed ID: 30575372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High performance strain sensor based on buckypaper for full-range detection of human motions.
    Li C; Zhang D; Deng C; Wang P; Hu Y; Bin Y; Fan Z; Pan L
    Nanoscale; 2018 Aug; 10(31):14966-14975. PubMed ID: 30047969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Systematic Comparison of Age and Gender Prediction on IMU Sensor-Based Gait Traces.
    Van Hamme T; Garofalo G; Argones Rúa E; Preuveneers D; Joosen W
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31277389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Turning Analysis during Standardized Test Using On-Shoe Wearable Sensors in Parkinson's Disease.
    Haji Ghassemi N; Hannink J; Roth N; Gaßner H; Marxreiter F; Klucken J; Eskofier BM
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31337067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward Using a Smartwatch to Monitor Frailty in a Hospital Setting: Using a Single Wrist-Wearable Sensor to Assess Frailty in Bedbound Inpatients.
    Lee H; Joseph B; Enriquez A; Najafi B
    Gerontology; 2018; 64(4):389-400. PubMed ID: 29176316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.