These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

517 related articles for article (PubMed ID: 30413107)

  • 1. Prediction of Acute Kidney Injury after Liver Transplantation: Machine Learning Approaches vs. Logistic Regression Model.
    Lee HC; Yoon SB; Yang SM; Kim WH; Ryu HG; Jung CW; Suh KS; Lee KH
    J Clin Med; 2018 Nov; 7(11):. PubMed ID: 30413107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Derivation and Validation of Machine Learning Approaches to Predict Acute Kidney Injury after Cardiac Surgery.
    Lee HC; Yoon HK; Nam K; Cho YJ; Kim TK; Kim WH; Bahk JH
    J Clin Med; 2018 Oct; 7(10):. PubMed ID: 30282956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine Learning-Based Prediction of Acute Kidney Injury Following Pediatric Cardiac Surgery: Model Development and Validation Study.
    Luo XQ; Kang YX; Duan SB; Yan P; Song GB; Zhang NY; Yang SK; Li JX; Zhang H
    J Med Internet Res; 2023 Jan; 25():e41142. PubMed ID: 36603200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Explainable Preoperative Automated Machine Learning Prediction Model for Cardiac Surgery-Associated Acute Kidney Injury.
    Thongprayoon C; Pattharanitima P; Kattah AG; Mao MA; Keddis MT; Dillon JJ; Kaewput W; Tangpanithandee S; Krisanapan P; Qureshi F; Cheungpasitporn W
    J Clin Med; 2022 Oct; 11(21):. PubMed ID: 36362493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Comparison of machine learning method and logistic regression model in prediction of acute kidney injury in severely burned patients].
    Tang CQ; Li JQ; Xu DY; Liu XB; Hou WJ; Lyu KY; Xiao SC; Xia ZF
    Zhonghua Shao Shang Za Zhi; 2018 Jun; 34(6):343-348. PubMed ID: 29961290
    [No Abstract]   [Full Text] [Related]  

  • 6. An explainable supervised machine learning predictor of acute kidney injury after adult deceased donor liver transplantation.
    Zhang Y; Yang D; Liu Z; Chen C; Ge M; Li X; Luo T; Wu Z; Shi C; Wang B; Huang X; Zhang X; Zhou S; Hei Z
    J Transl Med; 2021 Jul; 19(1):321. PubMed ID: 34321016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of interpretable machine learning models for prediction of acute kidney injury after noncardiac surgery: a retrospective cohort study.
    Sun R; Li S; Wei Y; Hu L; Xu Q; Zhan G; Yan X; He Y; Wang Y; Li X; Luo A; Zhou Z
    Int J Surg; 2024 May; 110(5):2950-2962. PubMed ID: 38445452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using Machine Learning to Predict Acute Kidney Injury After Aortic Arch Surgery.
    Lei G; Wang G; Zhang C; Chen Y; Yang X
    J Cardiothorac Vasc Anesth; 2020 Dec; 34(12):3321-3328. PubMed ID: 32636105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of machine learning models for predicting acute kidney injury following donation after cardiac death liver transplantation.
    He ZL; Zhou JB; Liu ZK; Dong SY; Zhang YT; Shen T; Zheng SS; Xu X
    Hepatobiliary Pancreat Dis Int; 2021 Jun; 20(3):222-231. PubMed ID: 33726966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of the development of acute kidney injury following cardiac surgery by machine learning.
    Tseng PY; Chen YT; Wang CH; Chiu KM; Peng YS; Hsu SP; Chen KL; Yang CY; Lee OK
    Crit Care; 2020 Jul; 24(1):478. PubMed ID: 32736589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of Deep Learning to Predict Acute Kidney Injury After Intravenous Contrast Media Administration: Prediction Model Development Study.
    Yun D; Cho S; Kim YC; Kim DK; Oh KH; Joo KW; Kim YS; Han SS
    JMIR Med Inform; 2021 Oct; 9(10):e27177. PubMed ID: 34596574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incorporating intraoperative blood pressure time-series variables to assist in prediction of acute kidney injury after type a acute aortic dissection repair: an interpretable machine learning model.
    Dai A; Zhou Z; Jiang F; Guo Y; Asante DO; Feng Y; Huang K; Chen C; Shi H; Si Y; Zou J
    Ann Med; 2023; 55(2):2266458. PubMed ID: 37813109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning in predicting cardiac surgery-associated acute kidney injury: A systemic review and meta-analysis.
    Song Z; Yang Z; Hou M; Shi X
    Front Cardiovasc Med; 2022; 9():951881. PubMed ID: 36186995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of Machine Learning to Develop and Evaluate Models Using Preoperative and Intraoperative Data to Identify Risks of Postoperative Complications.
    Xue B; Li D; Lu C; King CR; Wildes T; Avidan MS; Kannampallil T; Abraham J
    JAMA Netw Open; 2021 Mar; 4(3):e212240. PubMed ID: 33783520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning-based prediction of off-pump coronary artery bypass grafting-associated acute kidney injury.
    Song Y; Zhai W; Ma S; Wu Y; Ren M; Van den Eynde J; Nardi P; Pang PYK; Ali JM; Han J; Guo Z
    J Thorac Dis; 2024 Jul; 16(7):4535-4542. PubMed ID: 39144311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of Intraoperative Data on Risk Prediction for Mortality After Intra-Abdominal Surgery.
    Yan X; Goldsmith J; Mohan S; Turnbull ZA; Freundlich RE; Billings FT; Kiran RP; Li G; Kim M
    Anesth Analg; 2022 Jan; 134(1):102-113. PubMed ID: 34908548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interpretable machine learning models for early prediction of acute kidney injury after cardiac surgery.
    Jiang J; Liu X; Cheng Z; Liu Q; Xing W
    BMC Nephrol; 2023 Nov; 24(1):326. PubMed ID: 37936067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison Between Statistical Model and Machine Learning Methods for Predicting the Risk of Renal Function Decline Using Routine Clinical Data in Health Screening.
    Cao X; Lin Y; Yang B; Li Y; Zhou J
    Risk Manag Healthc Policy; 2022; 15():817-826. PubMed ID: 35502445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using machine learning to predict outcomes following suprainguinal bypass.
    Li B; Eisenberg N; Beaton D; Lee DS; Aljabri B; Wijeysundera DN; Rotstein OD; de Mestral C; Mamdani M; Roche-Nagle G; Al-Omran M
    J Vasc Surg; 2024 Mar; 79(3):593-608.e8. PubMed ID: 37804954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning for early discrimination between transient and persistent acute kidney injury in critically ill patients with sepsis.
    Luo XQ; Yan P; Zhang NY; Luo B; Wang M; Deng YH; Wu T; Wu X; Liu Q; Wang HS; Wang L; Kang YX; Duan SB
    Sci Rep; 2021 Oct; 11(1):20269. PubMed ID: 34642418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.