These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 30413116)
41. Tunable phonon blockade in quadratically coupled optomechanical systems. Shi HQ; Zhou XT; Xu XW; Liu NH Sci Rep; 2018 Feb; 8(1):2212. PubMed ID: 29396514 [TBL] [Abstract][Full Text] [Related]
42. Optomechanical Quantum Control of a Nitrogen-Vacancy Center in Diamond. Golter DA; Oo T; Amezcua M; Stewart KA; Wang H Phys Rev Lett; 2016 Apr; 116(14):143602. PubMed ID: 27104709 [TBL] [Abstract][Full Text] [Related]
43. Large cooperativity and microkelvin cooling with a three-dimensional optomechanical cavity. Yuan M; Singh V; Blanter YM; Steele GA Nat Commun; 2015 Oct; 6():8491. PubMed ID: 26450772 [TBL] [Abstract][Full Text] [Related]
44. Generation of Schrödinger Cat States in a Hybrid Cavity Optomechanical System. An X; Deng T; Chen L; Ye S; Zhong Z Entropy (Basel); 2022 Oct; 24(11):. PubMed ID: 36359645 [TBL] [Abstract][Full Text] [Related]
45. Nanoelectronic Heterodyne Sensor: A New Electronic Sensing Paradigm. Kulkarni GS; Zang W; Zhong Z Acc Chem Res; 2016 Nov; 49(11):2578-2586. PubMed ID: 27668314 [TBL] [Abstract][Full Text] [Related]
46. All-optical enhancement of minimum detectable perturbation in intensity-based fiber sensors. Vanus B; Baker C; Chen L; Bao X Opt Express; 2021 Sep; 29(20):32114-32123. PubMed ID: 34615289 [TBL] [Abstract][Full Text] [Related]
47. A single-atom 3D sub-attonewton force sensor. Blūms V; Piotrowski M; Hussain MI; Norton BG; Connell SC; Gensemer S; Lobino M; Streed EW Sci Adv; 2018 Mar; 4(3):eaao4453. PubMed ID: 29740598 [TBL] [Abstract][Full Text] [Related]
50. Tuned and Balanced Redistributed Charge Scheme for Combined Quantum Mechanical and Molecular Mechanical (QM/MM) Methods and Fragment Methods: Tuning Based on the CM5 Charge Model. Wang B; Truhlar DG J Chem Theory Comput; 2013 Feb; 9(2):1036-42. PubMed ID: 26588746 [TBL] [Abstract][Full Text] [Related]
51. Optomechanical force sensor operating over wide detection range. Yan ZF; He B; Lin Q Opt Express; 2023 May; 31(10):16535-16548. PubMed ID: 37157730 [TBL] [Abstract][Full Text] [Related]
52. Nonreciprocal sideband responses in a spinning microwave magnomechanical system. Wang X; Huang KW; Xiong H Opt Express; 2023 Feb; 31(4):5492-5506. PubMed ID: 36823828 [TBL] [Abstract][Full Text] [Related]
54. Proposal for an optomechanical microwave sensor at the subphoton level. Zhang K; Bariani F; Dong Y; Zhang W; Meystre P Phys Rev Lett; 2015 Mar; 114(11):113601. PubMed ID: 25839267 [TBL] [Abstract][Full Text] [Related]
55. Ground-state cooling of rotating mirror in double-Laguerre-Gaussian-cavity with atomic ensemble. Liu YM; Bai CH; Wang DY; Wang T; Zheng MH; Wang HF; Zhu AD; Zhang S Opt Express; 2018 Mar; 26(5):6143-6157. PubMed ID: 29529808 [TBL] [Abstract][Full Text] [Related]
56. Proposal for an Optomechanical Bell Test. Vivoli VC; Barnea T; Galland C; Sangouard N Phys Rev Lett; 2016 Feb; 116(7):070405. PubMed ID: 26943515 [TBL] [Abstract][Full Text] [Related]
57. High-Precision Inertial Sensor Charge Ground Measurement Method Based on Phase-Sensitive Demodulation. Liu Y; Yu T; Wang Y; Zhao Z; Wang Z Sensors (Basel); 2024 Feb; 24(3):. PubMed ID: 38339724 [TBL] [Abstract][Full Text] [Related]
58. Kuznetsov-Ma Soliton Dynamics Based on the Mechanical Effect of Light. Xiong H; Gan J; Wu Y Phys Rev Lett; 2017 Oct; 119(15):153901. PubMed ID: 29077462 [TBL] [Abstract][Full Text] [Related]
59. Real-time free spectral range measurement based on optical single-sideband technique. Wang X; Feng L; Zhou Z; Li H; Liu D; Wang Q; Liu L; Jia Y; Jiao H; Liu N Opt Express; 2018 Mar; 26(6):7494-7506. PubMed ID: 29609302 [TBL] [Abstract][Full Text] [Related]