BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 30413533)

  • 1. Single-nucleotide resolution analysis of nucleotide excision repair of ribosomal DNA in humans and mice.
    Yang Y; Hu J; Selby CP; Li W; Yimit A; Jiang Y; Sancar A
    J Biol Chem; 2019 Jan; 294(1):210-217. PubMed ID: 30413533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic insights in transcription-coupled nucleotide excision repair of ribosomal DNA.
    Daniel L; Cerutti E; Donnio LM; Nonnekens J; Carrat C; Zahova S; Mari PO; Giglia-Mari G
    Proc Natl Acad Sci U S A; 2018 Jul; 115(29):E6770-E6779. PubMed ID: 29967171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repair of UV induced DNA lesions in ribosomal gene chromatin and the role of "Odd" RNA polymerases (I and III).
    Charton R; Guintini L; Peyresaubes F; Conconi A
    DNA Repair (Amst); 2015 Dec; 36():49-58. PubMed ID: 26411875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repair of rDNA in Saccharomyces cerevisiae: RAD4-independent strand-specific nucleotide excision repair of RNA polymerase I transcribed genes.
    Verhage RA; Van de Putte P; Brouwer J
    Nucleic Acids Res; 1996 Mar; 24(6):1020-5. PubMed ID: 8604332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repair of ribosomal RNA genes in hamster cells after UV irradiation, or treatment with cisplatin or alkylating agents.
    Stevnsner T; May A; Petersen LN; Larminat F; Pirsel M; Bohr VA
    Carcinogenesis; 1993 Aug; 14(8):1591-6. PubMed ID: 8353843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Rad4 homologue YDR314C is essential for strand-specific repair of RNA polymerase I-transcribed rDNA in Saccharomyces cerevisiae.
    den Dulk B; Brandsma JA; Brouwer J
    Mol Microbiol; 2005 Jun; 56(6):1518-26. PubMed ID: 15916602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcription-coupled repair in RNA polymerase I-transcribed genes of yeast.
    Conconi A; Bespalov VA; Smerdon MJ
    Proc Natl Acad Sci U S A; 2002 Jan; 99(2):649-54. PubMed ID: 11782531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repair of UV damage in actively transcribed ribosomal genes.
    Fritz LK; Smerdon MJ
    Biochemistry; 1995 Oct; 34(40):13117-24. PubMed ID: 7548072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lack of transcription-coupled repair in mammalian ribosomal RNA genes.
    Christians FC; Hanawalt PC
    Biochemistry; 1993 Oct; 32(39):10512-8. PubMed ID: 8399197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA polymerase II is released from the DNA template during transcription-coupled repair in mammalian cells.
    Chiou YY; Hu J; Sancar A; Selby CP
    J Biol Chem; 2018 Feb; 293(7):2476-2486. PubMed ID: 29282293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repair of active and silenced rDNA in yeast: the contributions of photolyase and transcription-couples nucleotide excision repair.
    Meier A; Livingstone-Zatchej M; Thoma F
    J Biol Chem; 2002 Apr; 277(14):11845-52. PubMed ID: 11805105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nascent Transcript Folding Plays a Major Role in Determining RNA Polymerase Elongation Rates.
    Turowski TW; Petfalski E; Goddard BD; French SL; Helwak A; Tollervey D
    Mol Cell; 2020 Aug; 79(3):488-503.e11. PubMed ID: 32585128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Efficiency of Global Genome-Nucleotide Excision Repair is Linked to the Fraction of Open rRNA Gene Chromatin, in Yeast.
    Paillé A; Charton R; Dholandre Q; Conconi A
    Photochem Photobiol; 2022 May; 98(3):696-706. PubMed ID: 34921417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide analysis of human global and transcription-coupled excision repair of UV damage at single-nucleotide resolution.
    Hu J; Adar S; Selby CP; Lieb JD; Sancar A
    Genes Dev; 2015 May; 29(9):948-60. PubMed ID: 25934506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repair of DNA double-strand breaks in RNAPI- and RNAPII-transcribed loci.
    Lesage E; Clouaire T; Legube G
    DNA Repair (Amst); 2021 Aug; 104():103139. PubMed ID: 34111758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ubiquitination of DNA Damage-Stalled RNAPII Promotes Transcription-Coupled Repair.
    Nakazawa Y; Hara Y; Oka Y; Komine O; van den Heuvel D; Guo C; Daigaku Y; Isono M; He Y; Shimada M; Kato K; Jia N; Hashimoto S; Kotani Y; Miyoshi Y; Tanaka M; Sobue A; Mitsutake N; Suganami T; Masuda A; Ohno K; Nakada S; Mashimo T; Yamanaka K; Luijsterburg MS; Ogi T
    Cell; 2020 Mar; 180(6):1228-1244.e24. PubMed ID: 32142649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rad26, the yeast homolog of the cockayne syndrome B gene product, counteracts inhibition of DNA repair due to RNA polymerase II transcription.
    Tijsterman M; Brouwer J
    J Biol Chem; 1999 Jan; 274(3):1199-202. PubMed ID: 9880486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The conserved RNA-binding protein Seb1 promotes cotranscriptional ribosomal RNA processing by controlling RNA polymerase I progression.
    Duval M; Yague-Sanz C; Turowski TW; Petfalski E; Tollervey D; Bachand F
    Nat Commun; 2023 May; 14(1):3013. PubMed ID: 37230993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptional inhibition by an oxidized abasic site in DNA.
    Wang Y; Sheppard TL; Tornaletti S; Maeda LS; Hanawalt PC
    Chem Res Toxicol; 2006 Feb; 19(2):234-41. PubMed ID: 16485899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A unique enhancer boundary complex on the mouse ribosomal RNA genes persists after loss of Rrn3 or UBF and the inactivation of RNA polymerase I transcription.
    Herdman C; Mars JC; Stefanovsky VY; Tremblay MG; Sabourin-Felix M; Lindsay H; Robinson MD; Moss T
    PLoS Genet; 2017 Jul; 13(7):e1006899. PubMed ID: 28715449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.