BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 30413645)

  • 21. Gamma amino butyric acid (GABA) immunoreactivity in the vestibular nuclei of normal and unilateral vestibular neurectomized cats.
    Tighilet B; Lacour M
    Eur J Neurosci; 2001 Jun; 13(12):2255-67. PubMed ID: 11454029
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fos-enkephalin signaling in the rat medial vestibular nucleus facilitates vestibular compensation.
    Kitahara T; Kaneko T; Horii A; Fukushima M; Kizawa-Okumura K; Takeda N; Kubo T
    J Neurosci Res; 2006 Jun; 83(8):1573-83. PubMed ID: 16547969
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of the commissural inhibitory system in vestibular compensation in the rat.
    Bergquist F; Ludwig M; Dutia MB
    J Physiol; 2008 Sep; 586(18):4441-52. PubMed ID: 18635647
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evidence against a role of gap junctions in vestibular compensation.
    Beraneck M; Uno A; Vassias I; Idoux E; De Waele C; Vidal PP; Vibert N
    Neurosci Lett; 2009 Jan; 450(2):97-101. PubMed ID: 19084577
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Vestibular compensation. Review of the literature and clinical applications].
    de Waele C; Vidal PP; Tran Ba Huy P; Freyss G
    Ann Otolaryngol Chir Cervicofac; 1990; 107(5):285-98. PubMed ID: 2221721
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vestibular compensation: Neural mechanisms and clinical implications for the treatment of vertigo.
    Takeda N; Matsuda K; Fukuda J; Sato G; Uno A; Kitahara T
    Auris Nasus Larynx; 2024 Apr; 51(2):328-336. PubMed ID: 38114342
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Parvalbumin-positive neurons in the medial vestibular nucleus contribute to vestibular compensation through commissural inhibition.
    Zhang Y; Chu G; Leng Y; Lin X; Zhou H; Lu Y; Liu B
    Front Cell Neurosci; 2023; 17():1260243. PubMed ID: 38026699
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Changes in the histaminergic system during vestibular compensation in the cat.
    Tighilet B; Trottier S; Mourre C; Lacour M
    J Physiol; 2006 Jun; 573(Pt 3):723-39. PubMed ID: 16613878
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Histaminergic ligands improve vestibular compensation in the cat: behavioural, neurochemical and molecular evidence.
    Tighilet B; Mourre C; Trottier S; Lacour M
    Eur J Pharmacol; 2007 Jul; 568(1-3):149-63. PubMed ID: 17573072
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Muscarinic receptor subtypes differentially control synaptic input and excitability of cerebellum-projecting medial vestibular nucleus neurons.
    Zhu Y; Chen SR; Pan HL
    J Neurochem; 2016 Apr; 137(2):226-39. PubMed ID: 26823384
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of the effects of ACTH-(4-10) on medial vestibular nucleus neurons in brainstem slices from labyrinthine-intact and compensated guinea pigs.
    Darlington CL; Smith PF; Gilchrist DP
    Neurosci Lett; 1992 Sep; 145(1):97-9. PubMed ID: 1334243
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Betahistine treatment in managing vertigo and improving vestibular compensation: clarification.
    Lacour M
    J Vestib Res; 2013; 23(3):139-51. PubMed ID: 24177346
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neuronal activity in the guinea pig medial vestibular nucleus in vitro following chronic unilateral labyrinthectomy.
    Darlington CL; Smith PF; Hubbard JI
    Neurosci Lett; 1989 Oct; 105(1-2):143-8. PubMed ID: 2485877
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An increase in glycinergic quantal amplitude and frequency during early vestibular compensation in mouse.
    Lim R; Callister RJ; Brichta AM
    J Neurophysiol; 2010 Jan; 103(1):16-24. PubMed ID: 19889844
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recovery of vestibulogastrointestinal symptoms during vestibular compensation after unilateral labyrinthectomy in rats.
    Lee JH; Ameer AN; Choi MA; Lee MY; Kim MS; Park BR
    Otol Neurotol; 2010 Feb; 31(2):241-9. PubMed ID: 20101163
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of MK801 on Fos expression in the rat brainstem after unilateral labyrinthectomy.
    Kitahara T; Takeda N; Saika T; Kubo T; Kiyama H
    Brain Res; 1995 Nov; 700(1-2):182-90. PubMed ID: 8624709
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Central vestibular compensation. Effect of the bilateral labyrinthectomy on neural activity in the medial vestibular nucleus.
    Ryu JH; McCabe BF
    Arch Otolaryngol; 1976 Feb; 102(2):71-6. PubMed ID: 1247421
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Histamine and betahistine in the treatment of vertigo: elucidation of mechanisms of action.
    Lacour M; Sterkers O
    CNS Drugs; 2001; 15(11):853-70. PubMed ID: 11700150
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanisms of recovery following unilateral labyrinthectomy: a review.
    Smith PF; Curthoys IS
    Brain Res Brain Res Rev; 1989; 14(2):155-80. PubMed ID: 2665890
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neuronal activity in the ipsilateral medial vestibular nucleus of the guinea pig following unilateral labyrinthectomy.
    Smith PF; Curthoys IS
    Brain Res; 1988 Mar; 444(2):308-19. PubMed ID: 3359298
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.