These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 3041368)

  • 1. Photocleavage of DNA and photofootprinting of E. coli RNA polymerase bound to promoter DNA by azido-9-acridinylamines.
    Jeppesen C; Buchardt O; Henriksen U; Nielsen PE
    Nucleic Acids Res; 1988 Jul; 16(13):5755-70. PubMed ID: 3041368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of a photoaffinity analog of UTP, 5-azido-UTP for analysis of the substrate binding site on E. coli RNA polymerase.
    Woody AY; Evans RK; Woody RW
    Biochem Biophys Res Commun; 1988 Feb; 150(3):917-24. PubMed ID: 2449209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uranyl mediated photofootprinting reveals strong E. coli RNA polymerase--DNA backbone contacts in the +10 region of the DeoP1 promoter open complex.
    Jeppesen C; Nielsen PE
    Nucleic Acids Res; 1989 Jul; 17(13):4947-56. PubMed ID: 2503811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photofootprinting of drug-binding sites on DNA using diazo- and azido-9-aminoacridine derivatives.
    Jeppesen C; Nielsen PE
    Eur J Biochem; 1989 Jun; 182(2):437-44. PubMed ID: 2472274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aromatic amino acids in region 2.3 of Escherichia coli sigma 70 participate collectively in the formation of an RNA polymerase-promoter open complex.
    Panaghie G; Aiyar SE; Bobb KL; Hayward RS; de Haseth PL
    J Mol Biol; 2000 Jun; 299(5):1217-30. PubMed ID: 10873447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A specific and efficient photoreaction between E. coli RNA polymerase and T+1 in the lacUV5 or deoP1 promoter.
    Jeppesen C; Jensen KF; Nielsen PE
    Nucleic Acids Res; 1988 Oct; 16(20):9545-55. PubMed ID: 3054808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping the promoter DNA sites proximal to conserved regions of sigma 70 in an Escherichia coli RNA polymerase-lacUV5 open promoter complex.
    Owens JT; Chmura AJ; Murakami K; Fujita N; Ishihama A; Meares CF
    Biochemistry; 1998 May; 37(21):7670-5. PubMed ID: 9601026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adenosine-guanosine preferential photocleavage of DNA by azido-benzoyl- and diazocyclopenta-dienylcarbonyloxy derivatives of 9-aminoacridine.
    Nielsen PE; Jeppesen C; Egholm M; Buchardt O
    Nucleic Acids Res; 1988 May; 16(9):3877-88. PubMed ID: 2836803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies of contacts between T7 RNA polymerase and its promoter reveal features in common with multisubunit RNA polymerases.
    Place C; Oddos J; Buc H; McAllister WT; Buckle M
    Biochemistry; 1999 Apr; 38(16):4948-57. PubMed ID: 10213596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformation and DNA binding properties of a single-stranded DNA binding region of sigma 70 subunit from Escherichia coli RNA polymerase are modulated by an interaction with the core enzyme.
    Callaci S; Heyduk T
    Biochemistry; 1998 Mar; 37(10):3312-20. PubMed ID: 9521651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of the DNA conformation on the rate of NtrC activated transcription of Escherichia coli RNA polymerase.sigma(54) holoenzyme.
    Schulz A; Langowski J; Rippe K
    J Mol Biol; 2000 Jul; 300(4):709-25. PubMed ID: 10891265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic determination of open complex formation at promoters for Escherichia coli RNA polymerase.
    Sullivan JJ; Bjornson KP; Sowers LC; deHaseth PL
    Biochemistry; 1997 Jul; 36(26):8005-12. PubMed ID: 9201947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Specific modification of DNA at E. coli RNA-polymerase binding sites].
    Petrenko VA; Semenova LN; Boldyrev AN; Kipriianov SM
    Mol Gen Mikrobiol Virusol; 1985 Dec; (12):19-25. PubMed ID: 3916215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Domain 1.1 of the sigma(70) subunit of Escherichia coli RNA polymerase modulates the formation of stable polymerase/promoter complexes.
    Vuthoori S; Bowers CW; McCracken A; Dombroski AJ; Hinton DM
    J Mol Biol; 2001 Jun; 309(3):561-72. PubMed ID: 11397080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Interaction of Escherichia coli RNA polymerase with oligoribonucleotides, homologous to "10"- and "35"- segments of the SPC promotor of bacterial genes].
    Savinkova LK; Sokolenko AA; Tulokhonov II; Knoppe VL; Salganik RI; Ven'iaminova AG; Repkova MN; Komarova NI
    Mol Biol (Mosk); 1993; 27(1):64-71. PubMed ID: 7683372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mutant RNA polymerase that forms unusual open promoter complexes.
    Severinov K; Darst SA
    Proc Natl Acad Sci U S A; 1997 Dec; 94(25):13481-6. PubMed ID: 9391051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for a tyrosine-adenine stacking interaction and for a short-lived open intermediate subsequent to initial binding of Escherichia coli RNA polymerase to promoter DNA.
    Schroeder LA; Gries TJ; Saecker RM; Record MT; Harris ME; DeHaseth PL
    J Mol Biol; 2009 Jan; 385(2):339-49. PubMed ID: 18976666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-specific protein-DNA photocrosslinking. Analysis of bacterial transcription initiation complexes.
    Naryshkin N; Kim Y; Dong Q; Ebright RH
    Methods Mol Biol; 2001; 148():337-61. PubMed ID: 11357597
    [No Abstract]   [Full Text] [Related]  

  • 19. The G+C-rich discriminator region of the tyrT promoter antagonises the formation of stable preinitiation complexes.
    Pemberton IK; Muskhelishvili G; Travers AA; Buckle M
    J Mol Biol; 2000 Jun; 299(4):859-64. PubMed ID: 10843842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA footprints of the two kinetically significant intermediates in formation of an RNA polymerase-promoter open complex: evidence that interactions with start site and downstream DNA induce sequential conformational changes in polymerase and DNA.
    Craig ML; Tsodikov OV; McQuade KL; Schlax PE; Capp MW; Saecker RM; Record MT
    J Mol Biol; 1998 Nov; 283(4):741-56. PubMed ID: 9790837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.