These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 30413702)
21. Robustly Engineering Thermal Conductivity of Bilayer Graphene by Interlayer Bonding. Zhang X; Gao Y; Chen Y; Hu M Sci Rep; 2016 Feb; 6():22011. PubMed ID: 26911859 [TBL] [Abstract][Full Text] [Related]
22. Quasi-bonding driven abnormal isotropic thermal transport in intrinsically anisotropic nanostructure: a case of study of a phosphorus nanotube array. Liu Q; Ouyang T; Qin G; He C; Li J; Zhang C; Tang C; Zhong J Nanotechnology; 2020 Feb; 31(9):095704. PubMed ID: 31726437 [TBL] [Abstract][Full Text] [Related]
23. Realizing Excellent Structural and Thermoelectric Performance in Mg Li Z; Sun C; Li X; Ye X; Yang K; Nie X; Zhao W; Zhang Q ACS Appl Mater Interfaces; 2023 May; 15(19):23447-23456. PubMed ID: 37134190 [TBL] [Abstract][Full Text] [Related]
24. The role of copper in the thermal conductivity of thermoelectric oxychalcogenides: do lone pairs matter? Vaqueiro P; Al Orabi RA; Luu SD; Guélou G; Powell AV; Smith RI; Song JP; Wee D; Fornari M Phys Chem Chem Phys; 2015 Dec; 17(47):31735-40. PubMed ID: 26559565 [TBL] [Abstract][Full Text] [Related]
25. The unexpected non-monotonic inter-layer bonding dependence of the thermal conductivity of bilayered boron nitride. Gao Y; Zhang X; Jing Y; Hu M Nanoscale; 2015 Apr; 7(16):7143-50. PubMed ID: 25811773 [TBL] [Abstract][Full Text] [Related]
26. Manipulation of ionized impurity scattering for achieving high thermoelectric performance in n-type Mg Mao J; Shuai J; Song S; Wu Y; Dally R; Zhou J; Liu Z; Sun J; Zhang Q; Dela Cruz C; Wilson S; Pei Y; Singh DJ; Chen G; Chu CW; Ren Z Proc Natl Acad Sci U S A; 2017 Oct; 114(40):10548-10553. PubMed ID: 28923974 [TBL] [Abstract][Full Text] [Related]
27. Suppression of Interfacial Diffusion in Mg Wang Y; Chen J; Jiang Y; Ferhat M; Ohno S; Munir ZA; Fan W; Chen S ACS Appl Mater Interfaces; 2022 Jul; ():. PubMed ID: 35839277 [TBL] [Abstract][Full Text] [Related]
28. Chemical bonding and properties of "layered" quaternary antimonide oxide REOZnSb (RE = La, Ce, Pr, Nd). Guo K; Man ZY; Wang XJ; Chen HH; Tang MB; Zhang ZJ; Grin Y; Zhao JT Dalton Trans; 2011 Oct; 40(39):10007-13. PubMed ID: 21897929 [TBL] [Abstract][Full Text] [Related]
29. High thermopower and ultra low thermal conductivity in Cd-based Zintl phase compounds. Pandey T; Singh AK Phys Chem Chem Phys; 2015 Jul; 17(26):16917-26. PubMed ID: 26060054 [TBL] [Abstract][Full Text] [Related]
30. Bioinspired layered materials with superior mechanical performance. Cheng Q; Jiang L; Tang Z Acc Chem Res; 2014 Apr; 47(4):1256-66. PubMed ID: 24635413 [TBL] [Abstract][Full Text] [Related]
31. Revisiting the Zintl-Klemm concept: alkali metal trielides. Wang F; Miller GJ Inorg Chem; 2011 Aug; 50(16):7625-36. PubMed ID: 21774461 [TBL] [Abstract][Full Text] [Related]
32. Designing high-performance layered thermoelectric materials through orbital engineering. Zhang J; Song L; Madsen GK; Fischer KF; Zhang W; Shi X; Iversen BB Nat Commun; 2016 Mar; 7():10892. PubMed ID: 26948043 [TBL] [Abstract][Full Text] [Related]
33. High throughput screening of semiconductors with low lattice thermal transport induced by long-range interactions. Wu Y; Ji L; Ding Y; Zhou L Mater Horiz; 2024 Jul; 11(15):3651-3661. PubMed ID: 38767150 [TBL] [Abstract][Full Text] [Related]
34. Resonant bonding leads to low lattice thermal conductivity. Lee S; Esfarjani K; Luo T; Zhou J; Tian Z; Chen G Nat Commun; 2014 Apr; 5():3525. PubMed ID: 24770354 [TBL] [Abstract][Full Text] [Related]