BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 30413891)

  • 1. A new method for detecting individual trees in aerial LiDAR point clouds using absolute height maxima.
    Khorrami R; Naeimi Z; Tabari M; Eslahchi MR
    Environ Monit Assess; 2018 Nov; 190(12):708. PubMed ID: 30413891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring small pioneer trees in the forest-tundra ecotone: using multi-temporal airborne laser scanning data to model height growth.
    Hauglin M; Bollandsås OM; Gobakken T; Næsset E
    Environ Monit Assess; 2017 Dec; 190(1):12. PubMed ID: 29222601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Species discrimination and individual tree detection for predicting main dendrometric characteristics in mixed temperate forests by use of airborne laser scanning and ultra-high-resolution imagery.
    Apostol B; Petrila M; Lorenţ A; Ciceu A; Gancz V; Badea O
    Sci Total Environ; 2020 Jan; 698():134074. PubMed ID: 31505359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Feasibility of Modelling the Crown Profile of
    Quan Y; Li M; Zhen Z; Hao Y; Wang B
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32998340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Individual Tree Segmentation Method Based on Mobile Backpack LiDAR Point Clouds.
    Comesaña-Cebral L; Martínez-Sánchez J; Lorenzo H; Arias P
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping Tree Canopy in Urban Environments Using Point Clouds from Airborne Laser Scanning and Street Level Imagery.
    Rodríguez-Puerta F; Barrera C; García B; Pérez-Rodríguez F; García-Pedrero AM
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Laser Vegetation Detecting Sensor: A Full Waveform, Large-Footprint, Airborne Laser Altimeter for Monitoring Forest Resources.
    Hu Y; Wu F; Sun Z; Lister A; Gao X; Li W; Peng D
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30974733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing heterogeneous forest structure in ponderosa pine forests via UAS-derived structure from motion.
    Hanna L; Tinkham WT; Battaglia MA; Vogeler JC; Ritter SM; Hoffman CM
    Environ Monit Assess; 2024 May; 196(6):530. PubMed ID: 38724828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated low-cost terrestrial laser scanner for measuring diameters at breast height and heights of plantation trees.
    Wang P; Li R; Bu G; Zhao R
    PLoS One; 2019; 14(1):e0209888. PubMed ID: 30653532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping and characterizing selected canopy tree species at the Angkor World Heritage site in Cambodia using aerial data.
    Singh M; Evans D; Tan BS; Nin CS
    PLoS One; 2015; 10(4):e0121558. PubMed ID: 25902148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The determination of some stand parameters using SfM-based spatial 3D point cloud in forestry studies: an analysis of data production in pure coniferous young forest stands.
    Gülci S
    Environ Monit Assess; 2019 Jul; 191(8):495. PubMed ID: 31302796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applicability of personal laser scanning in forestry inventory.
    Chen S; Liu H; Feng Z; Shen C; Chen P
    PLoS One; 2019; 14(2):e0211392. PubMed ID: 30811414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring trees outside forests: a review.
    Schnell S; Kleinn C; Ståhl G
    Environ Monit Assess; 2015 Sep; 187(9):600. PubMed ID: 26318320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drone-Based Environmental Monitoring and Image Processing Approaches for Resource Estimates of Private Native Forest.
    Srivastava SK; Seng KP; Ang LM; Pachas A'A; Lewis T
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Comparison of Three Airborne Laser Scanner Types for Species Identification of Individual Trees.
    Prieur JF; St-Onge B; Fournier RA; Woods ME; Rana P; Kneeshaw D
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrating LIDAR and forest inventories to fill the trees outside forests data gap.
    Johnson KD; Birdsey R; Cole J; Swatantran A; O'Neil-Dunne J; Dubayah R; Lister A
    Environ Monit Assess; 2015 Oct; 187(10):623. PubMed ID: 26364065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Estimating individual tree aboveground biomass of the mid-subtropical forest using airborne LiDAR technology].
    Liu F; Tan C; Lei PF
    Ying Yong Sheng Tai Xue Bao; 2014 Nov; 25(11):3229-36. PubMed ID: 25898621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the influence of topography and canopy structure on Douglas fir throughfall with LiDAR and empirical data in the Santa Cruz mountains, USA.
    Griffith KT; Ponette-González AG; Curran LM; Weathers KC
    Environ Monit Assess; 2015 May; 187(5):270. PubMed ID: 25893759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Individual Tree Structural Parameter Extraction and Volume Table Creation Based on Near-Field LiDAR Data: A Case Study in a Subtropical Planted Forest.
    Gao S; Zhang Z; Cao L
    Sensors (Basel); 2021 Dec; 21(23):. PubMed ID: 34884164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic extraction and measurement of individual trees from mobile laser scanning point clouds of forests.
    Bienert A; Georgi L; Kunz M; von Oheimb G; Maas HG
    Ann Bot; 2021 Oct; 128(6):787-804. PubMed ID: 34232276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.