BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 30414118)

  • 1. Physical Genome Mapping Using Fluorescence In Situ Hybridization with Mosquito Chromosomes.
    Sharakhova MV; Artemov GN; Timoshevskiy VA; Sharakhov IV
    Methods Mol Biol; 2019; 1858():177-194. PubMed ID: 30414118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Obtaining Polytene, Meiotic, and Mitotic Chromosomes from Mosquitoes for Cytogenetic Analysis.
    Liang J; Bondarenko SM; Sharakhov IV; Sharakhova MV
    Cold Spring Harb Protoc; 2022 Dec; 2022(12):591-598. PubMed ID: 35960616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescent in situ hybridization on mitotic chromosomes of mosquitoes.
    Timoshevskiy VA; Sharma A; Sharakhov IV; Sharakhova MV
    J Vis Exp; 2012 Sep; (67):e4215. PubMed ID: 23007640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A standard photomap of ovarian nurse cell chromosomes and inversion polymorphism in Anopheles beklemishevi.
    Artemov GN; Gordeev MI; Kokhanenko AA; Moskaev AV; Velichevskaya AI; Stegniy VN; Sharakhov IV; Sharakhova MV
    Parasit Vectors; 2018 Mar; 11(1):211. PubMed ID: 29587834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput physical mapping of chromosomes using automated in situ hybridization.
    George P; Sharakhova MV; Sharakhov IV
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A standard cytogenetic map of Culex quinquefasciatus polytene chromosomes in application for fine-scale physical mapping.
    Unger MF; Sharakhova MV; Harshbarger AJ; Glass P; Collins FH
    Parasit Vectors; 2015 Jun; 8():307. PubMed ID: 26048143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Partial-arm translocations in evolution of malaria mosquitoes revealed by high-coverage physical mapping of the Anopheles atroparvus genome.
    Artemov GN; Bondarenko SM; Naumenko AN; Stegniy VN; Sharakhova MV; Sharakhov IV
    BMC Genomics; 2018 Apr; 19(1):278. PubMed ID: 29688842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A standard photomap of the ovarian nurse cell chromosomes for the dominant malaria vector in Europe and Middle East Anopheles sacharovi.
    Artemov GN; Velichevskaya AI; Bondarenko SM; Karagyan GH; Aghayan SA; Arakelyan MS; Stegniy VN; Sharakhov IV; Sharakhova MV
    Malar J; 2018 Jul; 17(1):276. PubMed ID: 30060747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Physical Genome Mapping of Anopheles albimanus Corrected Scaffold Misassemblies and Identified Interarm Rearrangements in Genus Anopheles.
    Artemov GN; Peery AN; Jiang X; Tu Z; Stegniy VN; Sharakhova MV; Sharakhov IV
    G3 (Bethesda); 2017 Jan; 7(1):155-164. PubMed ID: 27821634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An integrated chromosome map of microsatellite markers and inversion breakpoints for an Asian malaria mosquito, Anopheles stephensi.
    Kamali M; Sharakhova MV; Baricheva E; Karagodin D; Tu Z; Sharakhov IV
    J Hered; 2011; 102(6):719-26. PubMed ID: 21810771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative physical genome mapping of malaria vectors Anopheles sinensis and Anopheles gambiae.
    Wei Y; Cheng B; Zhu G; Shen D; Liang J; Wang C; Wang J; Tang J; Cao J; Sharakhov IV; Xia A
    Malar J; 2017 Jun; 16(1):235. PubMed ID: 28583133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic composition and evolution of Aedes aegypti chromosomes revealed by the analysis of physically mapped supercontigs.
    Timoshevskiy VA; Kinney NA; deBruyn BS; Mao C; Tu Z; Severson DW; Sharakhov IV; Sharakhova MV
    BMC Biol; 2014 Apr; 12():27. PubMed ID: 24731704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A standard photomap of ovarian nurse cell chromosomes in the European malaria vector Anopheles atroparvus.
    Artemov GN; Sharakhova MV; Naumenko AN; Karagodin DA; Baricheva EM; Stegniy VN; Sharakhov IV
    Med Vet Entomol; 2015 Sep; 29(3):230-7. PubMed ID: 25776224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitotic-chromosome-based physical mapping of the Culex quinquefasciatus genome.
    Naumenko AN; Timoshevskiy VA; Kinney NA; Kokhanenko AA; deBruyn BS; Lovin DD; Stegniy VN; Severson DW; Sharakhov IV; Sharakhova MV
    PLoS One; 2015; 10(3):e0115737. PubMed ID: 25768920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromosome evolution in malaria mosquitoes.
    Sharakhov IV; Sharakhova MV
    Genetika; 2010 Sep; 46(9):1250-3. PubMed ID: 21058512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue-specific differences in the spatial interposition of X-chromosome and 3R chromosome regions in the malaria mosquito Anopheles messeae Fall.
    Artemov G; Bondarenko S; Sapunov G; Stegniy V
    PLoS One; 2015; 10(2):e0115281. PubMed ID: 25671311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A standard cytogenetic map for Anopheles sinensis and chromosome arm homology between the subgenera Anopheles and Cellia.
    Liang J; Sharakhova MV; Lan Q; Zhu H; Sharakhov IV; Xia A
    Med Vet Entomol; 2014 Aug; 28 Suppl 1(0 1):26-32. PubMed ID: 25171604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Method for in situ hybridization to polytene chromosomes from ovarian nurse cells of Anopheles gambiae (Diptera: Culicidae).
    Graziosi C; Sakai RK; Romans P; Miller LH; Wellems TE
    J Med Entomol; 1990 Sep; 27(5):905-12. PubMed ID: 2231626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The chromosomes of Drosophila suzukii (Diptera: Drosophilidae): detailed photographic polytene chromosomal maps and in situ hybridization data.
    Drosopoulou E; Gariou-Papalexiou A; Karamoustou E; Gouvi G; Augustinos AA; Bourtzis K; Zacharopoulou A
    Mol Genet Genomics; 2019 Dec; 294(6):1535-1546. PubMed ID: 31346719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution cytogenetic map for the African malaria vector Anopheles gambiae.
    George P; Sharakhova MV; Sharakhov IV
    Insect Mol Biol; 2010 Oct; 19(5):675-82. PubMed ID: 20609021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.