BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

595 related articles for article (PubMed ID: 30414305)

  • 21. Analysis of >1000 single nucleotide polymorphisms in geographically matched samples of landrace and wild barley indicates secondary contact and chromosome-level differences in diversity around domestication genes.
    Russell J; Dawson IK; Flavell AJ; Steffenson B; Weltzien E; Booth A; Ceccarelli S; Grando S; Waugh R
    New Phytol; 2011 Jul; 191(2):564-578. PubMed ID: 21443695
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Next-generation sequencing applications for wheat crop improvement.
    Berkman PJ; Lai K; Lorenc MT; Edwards D
    Am J Bot; 2012 Feb; 99(2):365-71. PubMed ID: 22268223
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dispersion and domestication shaped the genome of bread wheat.
    Berkman PJ; Visendi P; Lee HC; Stiller J; Manoli S; Lorenc MT; Lai K; Batley J; Fleury D; Simková H; Kubaláková M; Weining S; Doležel J; Edwards D
    Plant Biotechnol J; 2013 Jun; 11(5):564-71. PubMed ID: 23346876
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Changes in Alternative Splicing in Response to Domestication and Polyploidization in Wheat.
    Yu K; Feng M; Yang G; Sun L; Qin Z; Cao J; Wen J; Li H; Zhou Y; Chen X; Peng H; Yao Y; Hu Z; Guo W; Sun Q; Ni Z; Adams K; Xin M
    Plant Physiol; 2020 Dec; 184(4):1955-1968. PubMed ID: 33051269
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The contribution of cis- and trans-acting variants to gene regulation in wild and domesticated barley under cold stress and control conditions.
    Haas M; Himmelbach A; Mascher M
    J Exp Bot; 2020 May; 71(9):2573-2584. PubMed ID: 31989179
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bread wheat: a role model for plant domestication and breeding.
    Venske E; Dos Santos RS; Busanello C; Gustafson P; Costa de Oliveira A
    Hereditas; 2019; 156():16. PubMed ID: 31160891
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plant domestication versus crop evolution: a conceptual framework for cereals and grain legumes.
    Abbo S; Pinhasi van-Oss R; Gopher A; Saranga Y; Ofner I; Peleg Z
    Trends Plant Sci; 2014 Jun; 19(6):351-60. PubMed ID: 24398119
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Next-Generation Sequencing Promoted the Release of Reference Genomes and Discovered Genome Evolution in Cereal Crops.
    Huang Y; Liu H; Xing Y
    Curr Issues Mol Biol; 2018; 27():37-50. PubMed ID: 28885173
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Advances and remaining challenges in the transformation of barley and wheat.
    Harwood WA
    J Exp Bot; 2012 Mar; 63(5):1791-8. PubMed ID: 22140237
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Accessing complex crop genomes with next-generation sequencing.
    Edwards D; Batley J; Snowdon RJ
    Theor Appl Genet; 2013 Jan; 126(1):1-11. PubMed ID: 22948437
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plant genome sequencing: applications for crop improvement.
    Edwards D; Batley J
    Plant Biotechnol J; 2010 Jan; 8(1):2-9. PubMed ID: 19906089
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genetic analysis of threshability and other spike traits in the evolution of cultivated emmer to fully domesticated durum wheat.
    Sharma JS; Running KLD; Xu SS; Zhang Q; Peters Haugrud AR; Sharma S; McClean PE; Faris JD
    Mol Genet Genomics; 2019 Jun; 294(3):757-771. PubMed ID: 30887143
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular, phylogenetic and comparative genomic analysis of the cytokinin oxidase/dehydrogenase gene family in the Poaceae.
    Mameaux S; Cockram J; Thiel T; Steuernagel B; Stein N; Taudien S; Jack P; Werner P; Gray JC; Greenland AJ; Powell W
    Plant Biotechnol J; 2012 Jan; 10(1):67-82. PubMed ID: 21838715
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wild barley: a source of genes for crop improvement in the 21st century?
    Ellis RP; Forster BP; Robinson D; Handley LL; Gordon DC; Russell JR; Powell W
    J Exp Bot; 2000 Jan; 51(342):9-17. PubMed ID: 10938791
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the Old World.
    Fuller DQ
    Ann Bot; 2007 Nov; 100(5):903-24. PubMed ID: 17495986
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dispersed emergence and protracted domestication of polyploid wheat uncovered by mosaic ancestral haploblock inference.
    Wang Z; Wang W; Xie X; Wang Y; Yang Z; Peng H; Xin M; Yao Y; Hu Z; Liu J; Su Z; Xie C; Li B; Ni Z; Sun Q; Guo W
    Nat Commun; 2022 Jul; 13(1):3891. PubMed ID: 35794156
    [TBL] [Abstract][Full Text] [Related]  

  • 37. μCT trait analysis reveals morphometric differences between domesticated temperate small grain cereals and their wild relatives.
    Hughes A; Oliveira HR; Fradgley N; Corke FMK; Cockram J; Doonan JH; Nibau C
    Plant J; 2019 Jul; 99(1):98-111. PubMed ID: 30868647
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comment on "AFLP data and the origins of domesticated crops".
    Salamini F; Heun M; Brandolini A; Ozkan H; Wunder J
    Genome; 2004 Jun; 47(3):615-20; discussion 621-2. PubMed ID: 15190379
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Shaping polyploid wheat for success: Origins, domestication, and the genetic improvement of agronomic traits.
    Liu J; Yao Y; Xin M; Peng H; Ni Z; Sun Q
    J Integr Plant Biol; 2022 Feb; 64(2):536-563. PubMed ID: 34962080
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetic pathways controlling inflorescence architecture and development in wheat and barley.
    Gauley A; Boden SA
    J Integr Plant Biol; 2019 Mar; 61(3):296-309. PubMed ID: 30325110
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.