These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 30414407)
1. HIV-1 Protease Uses Bi-Specific S2/S2' Subsites to Optimize Cleavage of Two Classes of Target Sites. Potempa M; Lee SK; Kurt Yilmaz N; Nalivaika EA; Rogers A; Spielvogel E; Carter CW; Schiffer CA; Swanstrom R J Mol Biol; 2018 Dec; 430(24):5182-5195. PubMed ID: 30414407 [TBL] [Abstract][Full Text] [Related]
2. Kinetic and modeling studies of S3-S3' subsites of HIV proteinases. Tözsér J; Weber IT; Gustchina A; Bláha I; Copeland TD; Louis JM; Oroszlan S Biochemistry; 1992 May; 31(20):4793-800. PubMed ID: 1591240 [TBL] [Abstract][Full Text] [Related]
3. Mutational analysis of the substrate binding pockets of the Rous sarcoma virus and human immunodeficiency virus-1 proteases. Cameron CE; Ridky TW; Shulenin S; Leis J; Weber IT; Copeland T; Wlodawer A; Burstein H; Bizub-Bender D; Skalka AM J Biol Chem; 1994 Apr; 269(15):11170-7. PubMed ID: 8157644 [TBL] [Abstract][Full Text] [Related]
4. Molecular basis for the relative substrate specificity of human immunodeficiency virus type 1 and feline immunodeficiency virus proteases. Beck ZQ; Lin YC; Elder JH J Virol; 2001 Oct; 75(19):9458-69. PubMed ID: 11533208 [TBL] [Abstract][Full Text] [Related]
5. Interdependence of Inhibitor Recognition in HIV-1 Protease. Paulsen JL; Leidner F; Ragland DA; Kurt Yilmaz N; Schiffer CA J Chem Theory Comput; 2017 May; 13(5):2300-2309. PubMed ID: 28358514 [TBL] [Abstract][Full Text] [Related]
6. Analysis of subsite preferences of HIV-1 proteinase using MA/CA junction peptides substituted at the P3-P1' positions. Billich A; Winkler G Arch Biochem Biophys; 1991 Oct; 290(1):186-90. PubMed ID: 1898088 [TBL] [Abstract][Full Text] [Related]
7. Effect of substrate residues on the P2' preference of retroviral proteinases. Boross P; Bagossi P; Copeland TD; Oroszlan S; Louis JM; Tözsér J Eur J Biochem; 1999 Sep; 264(3):921-9. PubMed ID: 10491141 [TBL] [Abstract][Full Text] [Related]
8. The specificity of prolyl endopeptidase from Flavobacterium meningoseptum: mapping the S' subsites by positional scanning via acyl transfer. Bordusa F; Jakubke HD Bioorg Med Chem; 1998 Oct; 6(10):1775-80. PubMed ID: 9839007 [TBL] [Abstract][Full Text] [Related]
9. Design, synthesis, and evaluation of matrix metalloprotease inhibitors bearing cyclopropane-derived peptidomimetics as P1' and P2' replacements. Reichelt A; Gaul C; Frey RR; Kennedy A; Martin SF J Org Chem; 2002 Jun; 67(12):4062-75. PubMed ID: 12054939 [TBL] [Abstract][Full Text] [Related]
10. Thrombin specificity. Requirement for apolar amino acids adjacent to the thrombin cleavage site of polypeptide substrate. Chang JY Eur J Biochem; 1985 Sep; 151(2):217-24. PubMed ID: 2863141 [TBL] [Abstract][Full Text] [Related]
11. Combining mutations in HIV-1 protease to understand mechanisms of resistance. Mahalingam B; Boross P; Wang YF; Louis JM; Fischer CC; Tozser J; Harrison RW; Weber IT Proteins; 2002 Jul; 48(1):107-16. PubMed ID: 12012342 [TBL] [Abstract][Full Text] [Related]
12. Characterization of the P2' and P3' specificities of thrombin using fluorescence-quenched substrates and mapping of the subsites by mutagenesis. Le Bonniec BF; Myles T; Johnson T; Knight CG; Tapparelli C; Stone SR Biochemistry; 1996 Jun; 35(22):7114-22. PubMed ID: 8679538 [TBL] [Abstract][Full Text] [Related]
13. Crystallographic analysis of human immunodeficiency virus 1 protease with an analog of the conserved CA-p2 substrate -- interactions with frequently occurring glutamic acid residue at P2' position of substrates. Weber IT; Wu J; Adomat J; Harrison RW; Kimmel AR; Wondrak EM; Louis JM Eur J Biochem; 1997 Oct; 249(2):523-30. PubMed ID: 9370363 [TBL] [Abstract][Full Text] [Related]
14. Cyclic sulfamide HIV-1 protease inhibitors, with sidechains spanning from P2/P2' to P1/P1'. Ax A; Schaal W; Vrang L; Samuelsson B; Hallberg A; Karlén A Bioorg Med Chem; 2005 Feb; 13(3):755-64. PubMed ID: 15653343 [TBL] [Abstract][Full Text] [Related]
15. Mechanism of inhibition of the retroviral protease by a Rous sarcoma virus peptide substrate representing the cleavage site between the gag p2 and p10 proteins. Cameron CE; Grinde B; Jentoft J; Leis J; Weber IT; Copeland TD; Wlodawer A J Biol Chem; 1992 Nov; 267(33):23735-41. PubMed ID: 1331099 [TBL] [Abstract][Full Text] [Related]
16. Symmetric fluoro-substituted diol-based HIV protease inhibitors. Ortho-fluorinated and meta-fluorinated P1/P1'-benzyloxy side groups significantly improve the antiviral activity and preserve binding efficacy. Lindberg J; Pyring D; Löwgren S; Rosenquist A; Zuccarello G; Kvarnström I; Zhang H; Vrang L; Classon B; Hallberg A; Samuelsson B; Unge T Eur J Biochem; 2004 Nov; 271(22):4594-602. PubMed ID: 15560801 [TBL] [Abstract][Full Text] [Related]
17. Engagement of the S1, S1' and S2' subsites drives efficient catalysis of peptide bond hydrolysis by the M1-family aminopeptidase from Plasmodium falciparum. Dalal S; Ragheb DR; Klemba M Mol Biochem Parasitol; 2012 May; 183(1):70-7. PubMed ID: 22348949 [TBL] [Abstract][Full Text] [Related]
18. Alteration of substrate and inhibitor specificity of feline immunodeficiency virus protease. Lin YC; Beck Z; Lee T; Le VD; Morris GM; Olson AJ; Wong CH; Elder JH J Virol; 2000 May; 74(10):4710-20. PubMed ID: 10775609 [TBL] [Abstract][Full Text] [Related]
19. Reduced-bond tight-binding inhibitors of HIV-1 protease. Fine tuning of the enzyme subsite specificity. Urban J; Konvalinka J; Stehlíková J; Gregorová E; Majer P; Soucek M; Andreánsky M; Fábry M; Strop P FEBS Lett; 1992 Feb; 298(1):9-13. PubMed ID: 1544426 [TBL] [Abstract][Full Text] [Related]
20. Ligand modifications to reduce the relative resistance of multi-drug resistant HIV-1 protease. Dewdney TG; Wang Y; Liu Z; Sharma SK; Reiter SJ; Brunzelle JS; Kovari IA; Woster PM; Kovari LC Bioorg Med Chem; 2013 Dec; 21(23):7430-4. PubMed ID: 24128815 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]