These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 30414470)

  • 21. MODOMICS: An Operational Guide to the Use of the RNA Modification Pathways Database.
    Boccaletto P; Bagiński B
    Methods Mol Biol; 2021; 2284():481-505. PubMed ID: 33835459
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-performance nano-flow liquid chromatography column combined with high- and low-collision energy data-independent acquisition enables targeted and discovery identification of modified ribonucleotides by mass spectrometry.
    Espadas G; Morales-Sanfrutos J; Medina R; Lucas MC; Novoa EM; Sabidó E
    J Chromatogr A; 2022 Feb; 1665():462803. PubMed ID: 35042139
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Expanding the Epitranscriptomic RNA Sequencing and Modification Mapping Mass Spectrometry Toolbox with Field Asymmetric Waveform Ion Mobility and Electrochemical Elution Liquid Chromatography.
    Lauman R; Kim HJ; Pino LK; Scacchetti A; Xie Y; Robison F; Sidoli S; Bonasio R; Garcia BA
    Anal Chem; 2023 Mar; 95(12):5187-5195. PubMed ID: 36916610
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transcriptome-wide Identification of RNA-binding Protein Binding Sites Using Photoactivatable-Ribonucleoside-Enhanced Crosslinking Immunoprecipitation (PAR-CLIP).
    Maatz H; Kolinski M; Hubner N; Landthaler M
    Curr Protoc Mol Biol; 2017 Apr; 118():27.6.1-27.6.19. PubMed ID: 28369676
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of RNA hydrolyzates by liquid chromatography-mass spectrometry.
    Pomerantz SC; McCloskey JA
    Methods Enzymol; 1990; 193():796-824. PubMed ID: 1706064
    [No Abstract]   [Full Text] [Related]  

  • 26. Metabolic turnover and dynamics of modified ribonucleosides by
    Gameiro PA; Encheva V; Dos Santos MS; MacRae JI; Ule J
    J Biol Chem; 2021 Nov; 297(5):101294. PubMed ID: 34634303
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mapping of Posttranscriptional tRNA Modifications by Two-Dimensional Gel Electrophoresis Mass Spectrometry.
    Antoine L; Wolff P
    Methods Mol Biol; 2020; 2113():101-110. PubMed ID: 32006310
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterizing RNA modifications in the central nervous system and single cells by RNA sequencing and liquid chromatography-tandem mass spectrometry techniques.
    Patel A; Clark KD
    Anal Bioanal Chem; 2023 Jul; 415(18):3739-3748. PubMed ID: 36840809
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Overview of quantitative LC-MS techniques for proteomics and activitomics.
    Timms JF; Cutillas PR
    Methods Mol Biol; 2010; 658():19-45. PubMed ID: 20839096
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A general LC-MS-based RNA sequencing method for direct analysis of multiple-base modifications in RNA mixtures.
    Zhang N; Shi S; Jia TZ; Ziegler A; Yoo B; Yuan X; Li W; Zhang S
    Nucleic Acids Res; 2019 Nov; 47(20):e125. PubMed ID: 31504795
    [TBL] [Abstract][Full Text] [Related]  

  • 31. LC-MS Analysis of Methylated RNA.
    Thüring K; Schmid K; Keller P; Helm M
    Methods Mol Biol; 2017; 1562():3-18. PubMed ID: 28349450
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Naturally occurring modified ribonucleosides.
    McCown PJ; Ruszkowska A; Kunkler CN; Breger K; Hulewicz JP; Wang MC; Springer NA; Brown JA
    Wiley Interdiscip Rev RNA; 2020 Sep; 11(5):e1595. PubMed ID: 32301288
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced detection of post-transcriptional modifications using a mass-exclusion list strategy for RNA modification mapping by LC-MS/MS.
    Cao X; Limbach PA
    Anal Chem; 2015 Aug; 87(16):8433-40. PubMed ID: 26176336
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Locating chemical modifications in RNA sequences through ribonucleases and LC-MS based analysis.
    Thakur P; Abernathy S; Limbach PA; Addepalli B
    Methods Enzymol; 2021; 658():1-24. PubMed ID: 34517943
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantifying RNA modifications by mass spectrometry: a novel source of biomarkers in oncology.
    Amalric A; Bastide A; Attina A; Choquet A; Vialaret J; Lehmann S; David A; Hirtz C
    Crit Rev Clin Lab Sci; 2022 Jan; 59(1):1-18. PubMed ID: 34473579
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Robust algorithm for alignment of liquid chromatography-mass spectrometry analyses in an accurate mass and time tag data analysis pipeline.
    Jaitly N; Monroe ME; Petyuk VA; Clauss TR; Adkins JN; Smith RD
    Anal Chem; 2006 Nov; 78(21):7397-409. PubMed ID: 17073405
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomedical and biochemical applications of liquid chromatography-mass spectrometry.
    Gelpí E
    J Chromatogr A; 1995 May; 703(1-2):59-80. PubMed ID: 7599744
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chromatography and its hyphenation to mass spectrometry for extracellular vesicle analysis.
    Pocsfalvi G; Stanly C; Fiume I; Vékey K
    J Chromatogr A; 2016 Mar; 1439():26-41. PubMed ID: 26830636
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent developments in liquid chromatography-mass spectrometry and related techniques.
    Holčapek M; Jirásko R; Lísa M
    J Chromatogr A; 2012 Oct; 1259():3-15. PubMed ID: 22959775
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The power of hyphenated chromatography/time-of-flight mass spectrometry in public health laboratories.
    Ibáñez M; Portolés T; Rúbies A; Muñoz E; Muñoz G; Pineda L; Serrahima E; Sancho JV; Centrich F; Hernández F
    J Agric Food Chem; 2012 May; 60(21):5311-23. PubMed ID: 22578112
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.