These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 30414510)
1. Deletion of nicotinic acetylcholine receptor alpha9 in mice resulted in altered bone structure. Baumann L; Kauschke V; Vikman A; Dürselen L; Krasteva-Christ G; Kampschulte M; Heiss C; Yee KT; Vetter DE; Lips KS Bone; 2019 Mar; 120():285-296. PubMed ID: 30414510 [TBL] [Abstract][Full Text] [Related]
2. Attenuation in Nicotinic Acetylcholine Receptor α9 and α10 Subunit Double Knock-Out Mice of Experimental Autoimmune Encephalomyelitis. Liu Q; Li M; Whiteaker P; Shi FD; Morley BJ; Lukas RJ Biomolecules; 2019 Dec; 9(12):. PubMed ID: 31817275 [TBL] [Abstract][Full Text] [Related]
3. Quantitative analyses of bone composition in acetylcholine receptor M3R and alpha7 knockout mice. Kliemann K; Kneffel M; Bergen I; Kampschulte M; Langheinrich AC; Dürselen L; Ignatius A; Kilian O; Schnettler R; Lips KS Life Sci; 2012 Nov; 91(21-22):997-1002. PubMed ID: 22871384 [TBL] [Abstract][Full Text] [Related]
4. Small changes in bone structure of female α7 nicotinic acetylcholine receptor knockout mice. Lips KS; Yanko Ö; Kneffel M; Panzer I; Kauschke V; Madzharova M; Henss A; Schmitz P; Rohnke M; Bäuerle T; Liu Y; Kampschulte M; Langheinrich AC; Dürselen L; Ignatius A; Heiss C; Schnettler R; Kilian O BMC Musculoskelet Disord; 2015 Jan; 16(1):5. PubMed ID: 25636336 [TBL] [Abstract][Full Text] [Related]
5. Constitutive protein kinase A activity in osteocytes and late osteoblasts produces an anabolic effect on bone. Kao RS; Abbott MJ; Louie A; O'Carroll D; Lu W; Nissenson R Bone; 2013 Aug; 55(2):277-87. PubMed ID: 23583750 [TBL] [Abstract][Full Text] [Related]
6. Generation and Characterization of α9 and α10 Nicotinic Acetylcholine Receptor Subunit Knockout Mice on a C57BL/6J Background. Morley BJ; Dolan DF; Ohlemiller KK; Simmons DD Front Neurosci; 2017; 11():516. PubMed ID: 28983232 [TBL] [Abstract][Full Text] [Related]
7. Nicotinic acetylcholine receptors regulate vestibular afferent gain and activation timing. Morley BJ; Lysakowski A; Vijayakumar S; Menapace D; Jones TA J Comp Neurol; 2017 Apr; 525(5):1216-1233. PubMed ID: 27718229 [TBL] [Abstract][Full Text] [Related]
8. Lack of nAChR activity depresses cochlear maturation and up-regulates GABA system components: temporal profiling of gene expression in alpha9 null mice. Turcan S; Slonim DK; Vetter DE PLoS One; 2010 Feb; 5(2):e9058. PubMed ID: 20140217 [TBL] [Abstract][Full Text] [Related]
9. Canonical and Novel Non-Canonical Cholinergic Agonists Inhibit ATP-Induced Release of Monocytic Interleukin-1β via Different Combinations of Nicotinic Acetylcholine Receptor Subunits α7, α9 and α10. Zakrzewicz A; Richter K; Agné A; Wilker S; Siebers K; Fink B; Krasteva-Christ G; Althaus M; Padberg W; Hone AJ; McIntosh JM; Grau V Front Cell Neurosci; 2017; 11():189. PubMed ID: 28725182 [TBL] [Abstract][Full Text] [Related]
10. Inhibition of osteoclast differentiation and collagen antibody-induced arthritis by CTHRC1. Jin YR; Stohn JP; Wang Q; Nagano K; Baron R; Bouxsein ML; Rosen CJ; Adarichev VA; Lindner V Bone; 2017 Apr; 97():153-167. PubMed ID: 28115279 [TBL] [Abstract][Full Text] [Related]
11. Nicotinic Acetylcholine Receptor α9 and α10 Subunits Are Expressed in the Brain of Mice. Lykhmus O; Voytenko LP; Lips KS; Bergen I; Krasteva-Christ G; Vetter DE; Kummer W; Skok M Front Cell Neurosci; 2017; 11():282. PubMed ID: 28955208 [TBL] [Abstract][Full Text] [Related]
12. Differential involvement of α4β2, α7 and α9α10 nicotinic acetylcholine receptors in B lymphocyte activation in vitro. Koval L; Lykhmus O; Zhmak M; Khruschov A; Tsetlin V; Magrini E; Viola A; Chernyavsky A; Qian J; Grando S; Komisarenko S; Skok M Int J Biochem Cell Biol; 2011 Apr; 43(4):516-24. PubMed ID: 21146628 [TBL] [Abstract][Full Text] [Related]
13. Differential modulation of EAE by α9*- and β2*-nicotinic acetylcholine receptors. Simard AR; Gan Y; St-Pierre S; Kousari A; Patel V; Whiteaker P; Morley BJ; Lukas RJ; Shi FD Immunol Cell Biol; 2013 Mar; 91(3):195-200. PubMed ID: 23399696 [TBL] [Abstract][Full Text] [Related]
14. Regulation of acetylcholine receptors during differentiation of bone mesenchymal stem cells harvested from human reaming debris. Zablotni A; Dakischew O; Trinkaus K; Hartmann S; Szalay G; Heiss C; Lips KS Int Immunopharmacol; 2015 Nov; 29(1):119-26. PubMed ID: 26215588 [TBL] [Abstract][Full Text] [Related]
15. Mice Lacking the Alpha9 Subunit of the Nicotinic Acetylcholine Receptor Exhibit Deficits in Frequency Difference Limens and Sound Localization. Clause A; Lauer AM; Kandler K Front Cell Neurosci; 2017; 11():167. PubMed ID: 28663725 [TBL] [Abstract][Full Text] [Related]
16. Differential Contribution of Subunit Interfaces to α9α10 Nicotinic Acetylcholine Receptor Function. Boffi JC; Marcovich I; Gill-Thind JK; Corradi J; Collins T; Lipovsek MM; Moglie M; Plazas PV; Craig PO; Millar NS; Bouzat C; Elgoyhen AB Mol Pharmacol; 2017 Mar; 91(3):250-262. PubMed ID: 28069778 [TBL] [Abstract][Full Text] [Related]
17. Altered ultrastructure, density and cathepsin K expression in bone of female muscarinic acetylcholine receptor M3 knockout mice. Lips KS; Kneffel M; Willscheid F; Mathies FM; Kampschulte M; Hartmann S; Panzer I; Dürselen L; Heiss C; Kauschke V Int Immunopharmacol; 2015 Nov; 29(1):201-7. PubMed ID: 26002583 [TBL] [Abstract][Full Text] [Related]
18. alpha10: a determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells. Elgoyhen AB; Vetter DE; Katz E; Rothlin CV; Heinemann SF; Boulter J Proc Natl Acad Sci U S A; 2001 Mar; 98(6):3501-6. PubMed ID: 11248107 [TBL] [Abstract][Full Text] [Related]
19. Activity of nAChRs containing alpha9 subunits modulates synapse stabilization via bidirectional signaling programs. Murthy V; Taranda J; Elgoyhen AB; Vetter DE Dev Neurobiol; 2009 Dec; 69(14):931-49. PubMed ID: 19790106 [TBL] [Abstract][Full Text] [Related]
20. The alpha10 nicotinic acetylcholine receptor subunit is required for normal synaptic function and integrity of the olivocochlear system. Vetter DE; Katz E; Maison SF; Taranda J; Turcan S; Ballestero J; Liberman MC; Elgoyhen AB; Boulter J Proc Natl Acad Sci U S A; 2007 Dec; 104(51):20594-9. PubMed ID: 18077337 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]