BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 30414543)

  • 1. From micro to macro-contaminants: The impact of low-energy titanium dioxide photocatalysis followed by filtration on the mitigation of drinking water organics.
    Mayer BK; Johnson C; Yang Y; Wellenstein N; Maher E; McNamara PJ
    Chemosphere; 2019 Feb; 217():111-121. PubMed ID: 30414543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid loss of estrogenicity of steroid estrogens by UVA photolysis and photocatalysis over an immobilised titanium dioxide catalyst.
    Coleman HM; Routledge EJ; Sumpter JP; Eggins BR; Byrne JA
    Water Res; 2004; 38(14-15):3233-40. PubMed ID: 15276739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disinfection byproduct formation resulting from settled, filtered, and finished water treated by titanium dioxide photocatalysis.
    Mayer BK; Daugherty E; Abbaszadegan M
    Chemosphere; 2014 Dec; 117():72-8. PubMed ID: 24972073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the relationship between bulk organic precursors and disinfection byproduct formation for advanced oxidation processes.
    Mayer BK; Daugherty E; Abbaszadegan M
    Chemosphere; 2015 Feb; 121():39-46. PubMed ID: 25433979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficiency of 1,4-dichlorobenzene degradation in water under photolysis, photocatalysis on TiO2 and sonolysis.
    Selli E; Bianchi CL; Pirola C; Cappelletti G; Ragaini V
    J Hazard Mater; 2008 May; 153(3):1136-41. PubMed ID: 17976904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Upgrading coagulation with hollow-fibre nanofiltration for improved organic matter removal during surface water treatment.
    Köhler SJ; Lavonen E; Keucken A; Schmitt-Kopplin P; Spanjer T; Persson K
    Water Res; 2016 Feb; 89():232-40. PubMed ID: 26689660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of natural organic matter by TiO2 photocatalytic oxidation and its effect on fouling of low-pressure membranes.
    Huang X; Leal M; Li Q
    Water Res; 2008 Feb; 42(4-5):1142-50. PubMed ID: 17904191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An investigation into reservoir NOM reduction by UV photolysis and advanced oxidation processes.
    Goslan EH; Gurses F; Banks J; Parsons SA
    Chemosphere; 2006 Nov; 65(7):1113-9. PubMed ID: 16765416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation of organics in retentates from reverse osmosis wastewater reuse facilities.
    Westerhoff P; Moon H; Minakata D; Crittenden J
    Water Res; 2009 Sep; 43(16):3992-8. PubMed ID: 19450863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drinking water treatment of priority pesticides using low pressure UV photolysis and advanced oxidation processes.
    Sanches S; Barreto Crespo MT; Pereira VJ
    Water Res; 2010 Mar; 44(6):1809-18. PubMed ID: 20045167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superiority of solar Fenton oxidation over TiO2 photocatalysis for the degradation of trimethoprim in secondary treated effluents.
    Michael I; Hapeshi E; Michael C; Fatta-Kassinos D
    Water Sci Technol; 2013; 67(6):1260-71. PubMed ID: 23508150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbamazepine degradation by photolysis and titanium dioxide photocatalysis.
    Im JK; Son HS; Kang YM; Zoh KD
    Water Environ Res; 2012 Jul; 84(7):554-61. PubMed ID: 22876477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Post-treatment of biologically treated wastewater containing organic contaminants using a sequence of H2O2 based advanced oxidation processes: photolysis and catalytic wet oxidation.
    Rueda-Márquez JJ; Sillanpää M; Pocostales P; Acevedo A; Manzano MA
    Water Res; 2015 Mar; 71():85-96. PubMed ID: 25600300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photocatalytic oxidation and removal of arsenite by titanium dioxide supported on granular activated carbon.
    Yao SH; Jia YF; Zhao SL
    Environ Technol; 2012; 33(7-9):983-8. PubMed ID: 22720424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reaction paths and efficiency of photocatalysis on TiO2 and of H2O2 photolysis in the degradation of 2-chlorophenol.
    Bertelli M; Selli E
    J Hazard Mater; 2006 Nov; 138(1):46-52. PubMed ID: 16787701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal type and natural organic matter source for direct filtration electrocoagulation of drinking water.
    Dubrawski KL; Fauvel M; Mohseni M
    J Hazard Mater; 2013 Jan; 244-245():135-41. PubMed ID: 23246949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous Degradation of Estrone, 17β-Estradiol and 17α-Ethinyl Estradiol in an Aqueous UV/H₂O₂ System.
    Ma X; Zhang C; Deng J; Song Y; Li Q; Guo Y; Li C
    Int J Environ Res Public Health; 2015 Sep; 12(10):12016-29. PubMed ID: 26404330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photocatalytic oxidation, GAC and biotreatment combinations: an alternative to the coagulation of hydrophilic rich waters?
    Philippe KK; Hans C; MacAdam J; Jefferson B; Hart J; Parsons SA
    Environ Technol; 2010 Dec; 31(13):1423-34. PubMed ID: 21214001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fate of natural organic matter at a full-scale Drinking Water Treatment Plant in Greece.
    Papageorgiou A; Papadakis N; Voutsa D
    Environ Sci Pollut Res Int; 2016 Jan; 23(2):1841-51. PubMed ID: 26400244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of water composition on TiO2 photocatalytic removal of endocrine disrupting compounds (EDCs) and estrogenic activity from secondary effluent.
    Zhang W; Li Y; Su Y; Mao K; Wang Q
    J Hazard Mater; 2012 May; 215-216():252-8. PubMed ID: 22436342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.