BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 30414612)

  • 21. scSLAM-seq reveals core features of transcription dynamics in single cells.
    Erhard F; Baptista MAP; Krammer T; Hennig T; Lange M; Arampatzi P; Jürges CS; Theis FJ; Saliba AE; Dölken L
    Nature; 2019 Jul; 571(7765):419-423. PubMed ID: 31292545
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa.
    Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J
    PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional characterization of open chromatin in bidirectional promoters of rice.
    Fang Y; Wang X; Wang L; Pan X; Xiao J; Wang XE; Wu Y; Zhang W
    Sci Rep; 2016 Aug; 6():32088. PubMed ID: 27558448
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integration of 198 ChIP-seq datasets reveals human cis-regulatory regions.
    Bolouri H; Ruzzo WL
    J Comput Biol; 2012 Sep; 19(9):989-97. PubMed ID: 22897152
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Utility of next-generation RNA-sequencing in identifying chimeric transcription involving human endogenous retroviruses.
    Sokol M; Jessen KM; Pedersen FS
    APMIS; 2016; 124(1-2):127-39. PubMed ID: 26818267
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nucleosome Density ChIP-Seq Identifies Distinct Chromatin Modification Signatures Associated with MNase Accessibility.
    Lorzadeh A; Bilenky M; Hammond C; Knapp DJHF; Li L; Miller PH; Carles A; Heravi-Moussavi A; Gakkhar S; Moksa M; Eaves CJ; Hirst M
    Cell Rep; 2016 Nov; 17(8):2112-2124. PubMed ID: 27851972
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integration of ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature genes.
    Ackermann AM; Wang Z; Schug J; Naji A; Kaestner KH
    Mol Metab; 2016 Mar; 5(3):233-244. PubMed ID: 26977395
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioinformatics Tools for Genome-Wide Epigenetic Research.
    Angarica VE; Del Sol A
    Adv Exp Med Biol; 2017; 978():489-512. PubMed ID: 28523562
    [TBL] [Abstract][Full Text] [Related]  

  • 29. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data.
    Kähärä J; Lähdesmäki H
    Bioinformatics; 2015 Sep; 31(17):2852-9. PubMed ID: 25957350
    [TBL] [Abstract][Full Text] [Related]  

  • 30. TP53 engagement with the genome occurs in distinct local chromatin environments via pioneer factor activity.
    Sammons MA; Zhu J; Drake AM; Berger SL
    Genome Res; 2015 Feb; 25(2):179-88. PubMed ID: 25391375
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessing the model transferability for prediction of transcription factor binding sites based on chromatin accessibility.
    Liu S; Zibetti C; Wan J; Wang G; Blackshaw S; Qian J
    BMC Bioinformatics; 2017 Jul; 18(1):355. PubMed ID: 28750606
    [TBL] [Abstract][Full Text] [Related]  

  • 32. iTAR: a web server for identifying target genes of transcription factors using ChIP-seq or ChIP-chip data.
    Yang CC; Andrews EH; Chen MH; Wang WY; Chen JJ; Gerstein M; Liu CC; Cheng C
    BMC Genomics; 2016 Aug; 17(1):632. PubMed ID: 27519564
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Integrative analysis of ChIP-chip and ChIP-seq dataset.
    Zhu LJ
    Methods Mol Biol; 2013; 1067():105-24. PubMed ID: 23975789
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nucleosome Organization in Human Embryonic Stem Cells.
    Yazdi PG; Pedersen BA; Taylor JF; Khattab OS; Chen YH; Chen Y; Jacobsen SE; Wang PH
    PLoS One; 2015; 10(8):e0136314. PubMed ID: 26305225
    [TBL] [Abstract][Full Text] [Related]  

  • 35. ChIP on chip and ChIP-Seq assays: genome-wide analysis of transcription factor binding and histone modifications.
    Pillai S; Chellappan SP
    Methods Mol Biol; 2015; 1288():447-72. PubMed ID: 25827896
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of histone modifications at human ribosomal DNA in liver cancer cell.
    Yu F; Shen X; Fan L; Yu Z
    Sci Rep; 2015 Dec; 5():18100. PubMed ID: 26657029
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CisMapper: predicting regulatory interactions from transcription factor ChIP-seq data.
    O'Connor T; Bodén M; Bailey TL
    Nucleic Acids Res; 2017 Feb; 45(4):e19. PubMed ID: 28204599
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitative Analysis of the DNA Methylation Sensitivity of Transcription Factor Complexes.
    Kribelbauer JF; Laptenko O; Chen S; Martini GD; Freed-Pastor WA; Prives C; Mann RS; Bussemaker HJ
    Cell Rep; 2017 Jun; 19(11):2383-2395. PubMed ID: 28614722
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stability of histone modifications across mammalian genomes: implications for 'epigenetic' marking.
    Lee BM; Mahadevan LC
    J Cell Biochem; 2009 Sep; 108(1):22-34. PubMed ID: 19623574
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Re-patterning of H3K27me3, H3K4me3 and DNA methylation during fibroblast conversion into induced cardiomyocytes.
    Liu Z; Chen O; Zheng M; Wang L; Zhou Y; Yin C; Liu J; Qian L
    Stem Cell Res; 2016 Mar; 16(2):507-18. PubMed ID: 26957038
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.