These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 30414838)
1. A novel chemical lysis method for maximum release of DNA from difficult-to-lyse bacteria. de Bruin OM; Chiefari A; Wroblewski D; Egan C; Kelly-Cirino CD Microb Pathog; 2019 Jan; 126():292-297. PubMed ID: 30414838 [TBL] [Abstract][Full Text] [Related]
2. A method for assessing efficiency of bacterial cell disruption and DNA release. de Bruin OM; Birnboim HC BMC Microbiol; 2016 Aug; 16(1):197. PubMed ID: 27566276 [TBL] [Abstract][Full Text] [Related]
3. Physical Pre-Treatment Improves Efficient DNA Extraction and qPCR Sensitivity from Clostridium Difficile Spores in Faecal Swine Specimens. Grześkowiak Ł; Zentek J; Vahjen W Curr Microbiol; 2016 Nov; 73(5):727-731. PubMed ID: 27534405 [TBL] [Abstract][Full Text] [Related]
4. Efficiency of chemical versus mechanical disruption methods of DNA extraction for the identification of oral Gram-positive and Gram-negative bacteria. Li X; Bosch-Tijhof CJ; Wei X; de Soet JJ; Crielaard W; Loveren CV; Deng DM J Int Med Res; 2020 May; 48(5):300060520925594. PubMed ID: 32459112 [TBL] [Abstract][Full Text] [Related]
5. The yield and quality of cellular and bacterial DNA extracts from human oral rinse samples are variably affected by the cell lysis methodology. Sohrabi M; Nair RG; Samaranayake LP; Zhang L; Zulfiker AH; Ahmetagic A; Good D; Wei MQ J Microbiol Methods; 2016 Mar; 122():64-72. PubMed ID: 26812577 [TBL] [Abstract][Full Text] [Related]
6. Mechanical disruption of lysis-resistant bacterial cells by use of a miniature, low-power, disposable device. Vandeventer PE; Weigel KM; Salazar J; Erwin B; Irvine B; Doebler R; Nadim A; Cangelosi GA; Niemz A J Clin Microbiol; 2011 Jul; 49(7):2533-9. PubMed ID: 21543569 [TBL] [Abstract][Full Text] [Related]
7. Comparison of four rapid DNA extraction techniques for conventional polymerase chain reaction testing of three Mycobacterium spp. that affect birds. Tell LA; Foley J; Needham ML; Walker RL Avian Dis; 2003; 47(4):1486-90. PubMed ID: 14709001 [TBL] [Abstract][Full Text] [Related]
8. [A new method for the disruption of cell walls of gram-positive bacteria and mycobacteria on the point of nucleic acid extraction: sand method]. Şahin F; Kıyan M; Karasartova D; Çalgın MK; Akhter S; Türegün Atasoy B Mikrobiyol Bul; 2016 Jan; 50(1):34-43. PubMed ID: 27058327 [TBL] [Abstract][Full Text] [Related]
9. Miniaturized bead-beating device to automate full DNA sample preparation processes for gram-positive bacteria. Hwang KY; Kwon SH; Jung SO; Lim HK; Jung WJ; Park CS; Kim JH; Suh KY; Huh N Lab Chip; 2011 Nov; 11(21):3649-55. PubMed ID: 21918771 [TBL] [Abstract][Full Text] [Related]
10. Internal control for nucleic acid testing based on the use of purified Bacillus atrophaeus subsp. globigii spores. Picard FJ; Gagnon M; Bernier MR; Parham NJ; Bastien M; Boissinot M; Peytavi R; Bergeron MG J Clin Microbiol; 2009 Mar; 47(3):751-7. PubMed ID: 19144808 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of DNA extraction methods for Bacillus anthracis spores spiked to food and feed matrices at biosafety level 3 conditions. Wielinga PR; de Heer L; de Groot A; Hamidjaja RA; Bruggeman G; Jordan K; van Rotterdam BJ Int J Food Microbiol; 2011 Nov; 150(2-3):122-7. PubMed ID: 21864928 [TBL] [Abstract][Full Text] [Related]
12. Improved detection of microbial DNA after bead-beating before DNA isolation. de Boer R; Peters R; Gierveld S; Schuurman T; Kooistra-Smid M; Savelkoul P J Microbiol Methods; 2010 Feb; 80(2):209-11. PubMed ID: 19995580 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of methods for DNA extraction from Clostridium tyrobutyricum spores and its detection by qPCR. Esteban M; Marcos P; Horna C; Galan-Malo P; Mata L; Pérez MD; Calvo M; Sánchez L J Microbiol Methods; 2020 Feb; 169():105818. PubMed ID: 31881287 [TBL] [Abstract][Full Text] [Related]
14. A new ultrasonic high-throughput instrument for rapid DNA release from microorganisms. Hohnadel M; Felden L; Fijuljanin D; Jouette S; Chollet R J Microbiol Methods; 2014 Apr; 99():71-80. PubMed ID: 24548895 [TBL] [Abstract][Full Text] [Related]
15. DNA isolation from soil samples for cloning in different hosts. Kauffmann IM; Schmitt J; Schmid RD Appl Microbiol Biotechnol; 2004 Jun; 64(5):665-70. PubMed ID: 14758515 [TBL] [Abstract][Full Text] [Related]
16. Comparative evaluation of DNA extraction methods for amplification by qPCR of superficial vs intracellular DNA from Bacillus spores. Brauge T; Faille C; Inglebert G; Dubois T; Morieux P; Slomianny C; Midelet-Bourdin G Int J Food Microbiol; 2018 Feb; 266():289-294. PubMed ID: 29274485 [TBL] [Abstract][Full Text] [Related]
17. Development of quantitative real-time PCR assays for detection and quantification of surrogate biological warfare agents in building debris and leachate. Saikaly PE; Barlaz MA; de Los Reyes FL Appl Environ Microbiol; 2007 Oct; 73(20):6557-65. PubMed ID: 17720820 [TBL] [Abstract][Full Text] [Related]
18. Efficient, validated method for detection of mycobacterial growth in liquid culture media by use of bead beating, magnetic-particle-based nucleic acid isolation, and quantitative PCR. Plain KM; Waldron AM; Begg DJ; de Silva K; Purdie AC; Whittington RJ J Clin Microbiol; 2015 Apr; 53(4):1121-8. PubMed ID: 25609725 [TBL] [Abstract][Full Text] [Related]
19. An extremely rapid and simple DNA-release method for detection of M. tuberculosis from clinical specimens. Thomson LM; Traore H; Yesilkaya H; Doig C; Steingrimsdottir H; Garcia L; Forbes KJ J Microbiol Methods; 2005 Oct; 63(1):95-8. PubMed ID: 15893828 [TBL] [Abstract][Full Text] [Related]
20. Optimal DNA isolation method for detection of bacteria in clinical specimens by broad-range PCR. Rantakokko-Jalava K; Jalava J J Clin Microbiol; 2002 Nov; 40(11):4211-7. PubMed ID: 12409400 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]