BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 30414964)

  • 21. sHSP in the eye lens: crystallin mutations, cataract and proteostasis.
    Clark AR; Lubsen NH; Slingsby C
    Int J Biochem Cell Biol; 2012 Oct; 44(10):1687-97. PubMed ID: 22405853
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Solution properties of γ-crystallins: hydration of fish and mammal γ-crystallins.
    Zhao H; Chen Y; Rezabkova L; Wu Z; Wistow G; Schuck P
    Protein Sci; 2014 Jan; 23(1):88-99. PubMed ID: 24282025
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Separating instability from aggregation propensity in γS-crystallin variants.
    Brubaker WD; Freites JA; Golchert KJ; Shapiro RA; Morikis V; Tobias DJ; Martin RW
    Biophys J; 2011 Jan; 100(2):498-506. PubMed ID: 21244846
    [TBL] [Abstract][Full Text] [Related]  

  • 24. EGCG prevents tryptophan oxidation of cataractous ocular lens human γ-crystallin in presence of H2O2.
    Chaudhury S; Ghosh I; Saha G; Dasgupta S
    Int J Biol Macromol; 2015; 77():287-92. PubMed ID: 25841365
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gamma III-crystallin is the primary target of glycation in the bovine lens incubated under physiological conditions.
    Yan H; Willis AC; Harding JJ
    Biochem J; 2003 Sep; 374(Pt 3):677-85. PubMed ID: 12803541
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel mutation impairing the tertiary structure and stability of γC-crystallin (CRYGC) leads to cataract formation in humans and zebrafish lens.
    Li XQ; Cai HC; Zhou SY; Yang JH; Xi YB; Gao XB; Zhao WJ; Li P; Zhao GY; Tong Y; Bao FC; Ma Y; Wang S; Yan YB; Lu CL; Ma X
    Hum Mutat; 2012 Feb; 33(2):391-401. PubMed ID: 22052681
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The impact of different mutations at Arg54 on structure, chaperone-like activity and oligomerization state of human αA-crystallin: The pathomechanism underlying congenital cataract-causing mutations R54L, R54P and R54C.
    Khoshaman K; Yousefi R; Tamaddon AM; Abolmaali SS; Oryan A; Moosavi-Movahedi AA; Kurganov BI
    Biochim Biophys Acta Proteins Proteom; 2017 May; 1865(5):604-618. PubMed ID: 28179137
    [TBL] [Abstract][Full Text] [Related]  

  • 28. γ-Crystallin redox-detox in the lens.
    Quinlan RA; Hogg PJ
    J Biol Chem; 2018 Nov; 293(46):18010-18011. PubMed ID: 30446601
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ATP antagonizes the crowding-induced destabilization of the human eye-lens protein γS-crystallin.
    He Y; Kang J; Song J
    Biochem Biophys Res Commun; 2020 Jun; 526(4):1112-1117. PubMed ID: 32307080
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of polyethylene glycol on the liquid-liquid phase transition in aqueous protein solutions.
    Annunziata O; Asherie N; Lomakin A; Pande J; Ogun O; Benedek GB
    Proc Natl Acad Sci U S A; 2002 Oct; 99(22):14165-70. PubMed ID: 12391331
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional and structural studies of alpha-crystallin from galactosemic rat lenses.
    Huang FY; Ho Y; Shaw TS; Chuang SA
    Biochem Biophys Res Commun; 2000 Jun; 273(1):197-202. PubMed ID: 10873586
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interaction of lens alpha and gamma crystallins during aging of the bovine lens.
    Peterson J; Radke G; Takemoto L
    Exp Eye Res; 2005 Dec; 81(6):680-9. PubMed ID: 15967431
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lenticular chaperones suppress the aggregation of the cataract-causing mutant T5P gamma C-crystallin.
    Pigaga V; Quinlan RA
    Exp Cell Res; 2006 Jan; 312(1):51-62. PubMed ID: 16303126
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural and functional characterization of a missense mutant of human γS-crystallin associated with dominant infantile cataracts.
    Bari KJ; Sharma S; Chary KVR
    Biochem Biophys Res Commun; 2018 Dec; 506(4):862-867. PubMed ID: 30391002
    [TBL] [Abstract][Full Text] [Related]  

  • 35. AlphaA-crystallin expression prevents gamma-crystallin insolubility and cataract formation in the zebrafish cloche mutant lens.
    Goishi K; Shimizu A; Najarro G; Watanabe S; Rogers R; Zon LI; Klagsbrun M
    Development; 2006 Jul; 133(13):2585-93. PubMed ID: 16728471
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Histidine Switch for Zn-Induced Aggregation of γ-Crystallins Reveals a Metal-Bridging Mechanism That Is Relevant to Cataract Disease.
    Domínguez-Calva JA; Haase-Pettingell C; Serebryany E; King JA; Quintanar L
    Biochemistry; 2018 Aug; 57(33):4959-4962. PubMed ID: 30064223
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interdomain side-chain interactions in human gammaD crystallin influencing folding and stability.
    Flaugh SL; Kosinski-Collins MS; King J
    Protein Sci; 2005 Aug; 14(8):2030-43. PubMed ID: 16046626
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation of the early stages of human γD-crystallin aggregation process.
    Chang CK; Wang SS; Lo CH; Hsiao HC; Wu JW
    J Biomol Struct Dyn; 2017 Apr; 35(5):1042-1054. PubMed ID: 27025196
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Causes of decreased phase transition temperature in selenite cataract model.
    Mitton KP; Hess JL; Bunce GE
    Invest Ophthalmol Vis Sci; 1995 Apr; 36(5):914-24. PubMed ID: 7706040
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Raman spectroscopic evidence for the microenvironmental change of some tyrosine residues of lens proteins in cold cataract.
    Mizuno A; Ozaki Y; Itoh K; Matsushima S; Iriyama K
    Biochem Biophys Res Commun; 1984 Mar; 119(3):989-94. PubMed ID: 6712681
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.