BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 30414984)

  • 1. Optimising neonatal fMRI data analysis: Design and validation of an extended dHCP preprocessing pipeline to characterise noxious-evoked brain activity in infants.
    Baxter L; Fitzgibbon S; Moultrie F; Goksan S; Jenkinson M; Smith S; Andersson J; Duff E; Slater R
    Neuroimage; 2019 Feb; 186():286-300. PubMed ID: 30414984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The developing Human Connectome Project (dHCP) automated resting-state functional processing framework for newborn infants.
    Fitzgibbon SP; Harrison SJ; Jenkinson M; Baxter L; Robinson EC; Bastiani M; Bozek J; Karolis V; Cordero Grande L; Price AN; Hughes E; Makropoulos A; Passerat-Palmbach J; Schuh A; Gao J; Farahibozorg SR; O'Muircheartaigh J; Ciarrusta J; O'Keeffe C; Brandon J; Arichi T; Rueckert D; Hajnal JV; Edwards AD; Smith SM; Duff E; Andersson J
    Neuroimage; 2020 Dec; 223():117303. PubMed ID: 32866666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The developing human connectome project: A minimal processing pipeline for neonatal cortical surface reconstruction.
    Makropoulos A; Robinson EC; Schuh A; Wright R; Fitzgibbon S; Bozek J; Counsell SJ; Steinweg J; Vecchiato K; Passerat-Palmbach J; Lenz G; Mortari F; Tenev T; Duff EP; Bastiani M; Cordero-Grande L; Hughes E; Tusor N; Tournier JD; Hutter J; Price AN; Teixeira RPAG; Murgasova M; Victor S; Kelly C; Rutherford MA; Smith SM; Edwards AD; Hajnal JV; Jenkinson M; Rueckert D
    Neuroimage; 2018 Jun; 173():88-112. PubMed ID: 29409960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional and diffusion MRI reveal the neurophysiological basis of neonates' noxious-stimulus evoked brain activity.
    Baxter L; Moultrie F; Fitzgibbon S; Aspbury M; Mansfield R; Bastiani M; Rogers R; Jbabdi S; Duff E; Slater R
    Nat Commun; 2021 May; 12(1):2744. PubMed ID: 33980860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benchmarking common preprocessing strategies in early childhood functional connectivity and intersubject correlation fMRI.
    Graff K; Tansey R; Ip A; Rohr C; Dimond D; Dewey D; Bray S
    Dev Cogn Neurosci; 2022 Apr; 54():101087. PubMed ID: 35196611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing preprocessing and analysis pipelines for single-subject fMRI: 2. Interactions with ICA, PCA, task contrast and inter-subject heterogeneity.
    Churchill NW; Yourganov G; Oder A; Tam F; Graham SJ; Strother SC
    PLoS One; 2012; 7(2):e31147. PubMed ID: 22383999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing preprocessing and analysis pipelines for single-subject fMRI. I. Standard temporal motion and physiological noise correction methods.
    Churchill NW; Oder A; Abdi H; Tam F; Lee W; Thomas C; Ween JE; Graham SJ; Strother SC
    Hum Brain Mapp; 2012 Mar; 33(3):609-27. PubMed ID: 21455942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated processing pipeline for neonatal diffusion MRI in the developing Human Connectome Project.
    Bastiani M; Andersson JLR; Cordero-Grande L; Murgasova M; Hutter J; Price AN; Makropoulos A; Fitzgibbon SP; Hughes E; Rueckert D; Victor S; Rutherford M; Edwards AD; Smith SM; Tournier JD; Hajnal JV; Jbabdi S; Sotiropoulos SN
    Neuroimage; 2019 Jan; 185():750-763. PubMed ID: 29852283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An automatic pipeline for atlas-based fetal and neonatal brain segmentation and analysis.
    Urru A; Nakaki A; Benkarim O; Crovetto F; Segalés L; Comte V; Hahner N; Eixarch E; Gratacos E; Crispi F; Piella G; González Ballester MA
    Comput Methods Programs Biomed; 2023 Mar; 230():107334. PubMed ID: 36682108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic evaluation of head motion on resting-state functional connectivity MRI in the neonate.
    Kim JH; De Asis-Cruz J; Kapse K; Limperopoulos C
    Hum Brain Mapp; 2023 Apr; 44(5):1934-1948. PubMed ID: 36576333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards HCP-Style macaque connectomes: 24-Channel 3T multi-array coil, MRI sequences and preprocessing.
    Autio JA; Glasser MF; Ose T; Donahue CJ; Bastiani M; Ohno M; Kawabata Y; Urushibata Y; Murata K; Nishigori K; Yamaguchi M; Hori Y; Yoshida A; Go Y; Coalson TS; Jbabdi S; Sotiropoulos SN; Kennedy H; Smith S; Van Essen DC; Hayashi T
    Neuroimage; 2020 Jul; 215():116800. PubMed ID: 32276072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing fMRI preprocessing pipelines for block-design tasks as a function of age.
    Churchill NW; Raamana P; Spring R; Strother SC
    Neuroimage; 2017 Jul; 154():240-254. PubMed ID: 28216431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NeoRS: A Neonatal Resting State fMRI Data Preprocessing Pipeline.
    Enguix V; Kenley J; Luck D; Cohen-Adad J; Lodygensky GA
    Front Neuroinform; 2022; 16():843114. PubMed ID: 35784189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Java-based fMRI processing pipeline evaluation system for assessment of univariate general linear model and multivariate canonical variate analysis-based pipelines.
    Zhang J; Liang L; Anderson JR; Gatewood L; Rottenberg DA; Strother SC
    Neuroinformatics; 2008; 6(2):123-34. PubMed ID: 18506642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modular preprocessing pipelines can reintroduce artifacts into fMRI data.
    Lindquist MA; Geuter S; Wager TD; Caffo BS
    Hum Brain Mapp; 2019 Jun; 40(8):2358-2376. PubMed ID: 30666750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of Denoising Strategies to Address Motion-Correlated Artifacts in Resting-State Functional Magnetic Resonance Imaging Data from the Human Connectome Project.
    Burgess GC; Kandala S; Nolan D; Laumann TO; Power JD; Adeyemo B; Harms MP; Petersen SE; Barch DM
    Brain Connect; 2016 Nov; 6(9):669-680. PubMed ID: 27571276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Typicality of functional connectivity robustly captures motion artifacts in rs-fMRI across datasets, atlases, and preprocessing pipelines.
    Kopal J; Pidnebesna A; Tomeček D; Tintěra J; Hlinka J
    Hum Brain Mapp; 2020 Dec; 41(18):5325-5340. PubMed ID: 32881215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multi-measure approach for assessing the performance of fMRI preprocessing strategies in resting-state functional connectivity.
    Kassinopoulos M; Mitsis GD
    Magn Reson Imaging; 2022 Jan; 85():228-250. PubMed ID: 34715292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pypreclin: An automatic pipeline for macaque functional MRI preprocessing.
    Tasserie J; Grigis A; Uhrig L; Dupont M; Amadon A; Jarraya B
    Neuroimage; 2020 Feb; 207():116353. PubMed ID: 31743789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advancing motion denoising of multiband resting-state functional connectivity fMRI data.
    Williams JC; Tubiolo PN; Luceno JR; Van Snellenberg JX
    Neuroimage; 2022 Apr; 249():118907. PubMed ID: 35033673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.