These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 30415155)

  • 1. A rapid real-time quantification in hybrid paper-polymer centrifugal optical devices.
    Kim S; Kim D; Kim S
    Biosens Bioelectron; 2019 Feb; 126():200-206. PubMed ID: 30415155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient in situ growth of enzyme-inorganic hybrids on paper strips for the visual detection of glucose.
    Li W; Lu S; Bao S; Shi Z; Lu Z; Li C; Yu L
    Biosens Bioelectron; 2018 Jan; 99():603-611. PubMed ID: 28837924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disposable Paper-on-CMOS Platform for Real-Time Simultaneous Detection of Metabolites.
    Hu C; Annese VF; Velugotla S; Al-Rawhani M; Cheah BC; Grant J; Barrett MP; Cumming DRS
    IEEE Trans Biomed Eng; 2020 Sep; 67(9):2417-2426. PubMed ID: 32011243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel functionalities of hybrid paper-polymer centrifugal devices for assay performance enhancement.
    Wiederoder MS; Smith S; Madzivhandila P; Mager D; Moodley K; DeVoe DL; Land KJ
    Biomicrofluidics; 2017 Sep; 11(5):054101. PubMed ID: 28966698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Centrifugal microfluidics for biomedical applications.
    Gorkin R; Park J; Siegrist J; Amasia M; Lee BS; Park JM; Kim J; Kim H; Madou M; Cho YK
    Lab Chip; 2010 Jul; 10(14):1758-73. PubMed ID: 20512178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection methods for centrifugal microfluidic platforms.
    Burger R; Amato L; Boisen A
    Biosens Bioelectron; 2016 Feb; 76():54-67. PubMed ID: 26166363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustofluidic Micromixing Enabled Hybrid Integrated Colorimetric Sensing, for Rapid Point-of-Care Measurement of Salivary Potassium.
    Surendran V; Chiulli T; Manoharan S; Knisley S; Packirisamy M; Chandrasekaran A
    Biosensors (Basel); 2019 May; 9(2):. PubMed ID: 31141923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitive colorimetric assay for uric acid and glucose detection based on multilayer-modified paper with smartphone as signal readout.
    Wang X; Li F; Cai Z; Liu K; Li J; Zhang B; He J
    Anal Bioanal Chem; 2018 Apr; 410(10):2647-2655. PubMed ID: 29455281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical devices (μPADs) - A review.
    Morbioli GG; Mazzu-Nascimento T; Stockton AM; Carrilho E
    Anal Chim Acta; 2017 Jun; 970():1-22. PubMed ID: 28433054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A paper-based calorimetric microfluidics platform for bio-chemical sensing.
    Davaji B; Lee CH
    Biosens Bioelectron; 2014 Sep; 59():120-6. PubMed ID: 24713542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Total internal reflection-based biochip utilizing a polymer-filled cavity with a micromirror sidewall.
    Chronis N; Lee LP
    Lab Chip; 2004 Apr; 4(2):125-30. PubMed ID: 15052352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The transformation of common office supplies into a low-cost optical biosensing platform.
    Duk Han Y; Jin Chun H; Yoon HC
    Biosens Bioelectron; 2014 Sep; 59():259-68. PubMed ID: 24732604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Portable paper-based device for quantitative colorimetric assays relying on light reflectance principle.
    Li B; Fu L; Zhang W; Feng W; Chen L
    Electrophoresis; 2014 Apr; 35(8):1152-9. PubMed ID: 24375226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymer waveguide sensor for early diagnostic and wellness monitoring.
    Irawan R; Cheng YH; Ng WM; Aung MM; Lao IK; Thaveeprungsriporn V
    Biosens Bioelectron; 2011 Apr; 26(8):3666-9. PubMed ID: 21367597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The eLoaD platform endows centrifugal microfluidics with on-disc power and communication.
    Torres Delgado SM; Korvink JG; Mager D
    Biosens Bioelectron; 2018 Oct; 117():464-473. PubMed ID: 29982115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymer Optical Fiber Tip Mass Production Etch Mechanism to Achieve CPC Shape for Improved Biosensor Performance.
    Hassan HU; Bang O; Janting J
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30642022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Performance of Colorimetric Biosensing on Paper Microfluidic Platforms Through Chemical Modification and Incorporation of Nanoparticles.
    Gabriel EF; Garcia PT; Evans E; Cardoso TM; Garcia CD; Coltro WK
    Methods Mol Biol; 2017; 1571():327-341. PubMed ID: 28281265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Absorbance Based Light Emitting Diode Optical Sensors and Sensing Devices.
    O'Toole M; Diamond D
    Sensors (Basel); 2008 Apr; 8(4):2453-2479. PubMed ID: 27879829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymer dual ring resonators for label-free optical biosensing using microfluidics.
    Salleh MH; Glidle A; Sorel M; Reboud J; Cooper JM
    Chem Commun (Camb); 2013 Apr; 49(30):3095-7. PubMed ID: 23396529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Paper-based microfluidic devices for glucose assays employing a metal-organic framework (MOF).
    Ilacas GC; Basa A; Nelms KJ; Sosa JD; Liu Y; Gomez FA
    Anal Chim Acta; 2019 May; 1055():74-80. PubMed ID: 30782373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.