These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 30415171)

  • 1. The reuse of waste glass for enhancement of heavy metals immobilization during the introduction of galvanized sludge in brick manufacturing.
    Mao L; Wu Y; Zhang W; Huang Q
    J Environ Manage; 2019 Feb; 231():780-787. PubMed ID: 30415171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective sludge management: Reuse of biowaste and sewer sediments for fired bricks.
    Nguyen HN; Dang HTT; Pham LTN; Nguyen HX; Tong KT; Pham TT; Nguyen KM; Tran HTM
    J Air Waste Manag Assoc; 2024 Jul; 74(7):478-489. PubMed ID: 38916528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of waste glass additions on quality of textile sludge-based bricks.
    Rahman A; Urabe T; Kishimoto N; Mizuhara S
    Environ Technol; 2015; 36(19):2443-50. PubMed ID: 25812619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of olive mill waste addition on the properties of porous fired clay bricks using Taguchi method.
    Sutcu M; Ozturk S; Yalamac E; Gencel O
    J Environ Manage; 2016 Oct; 181():185-192. PubMed ID: 27343435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sustainable use of tannery sludge in brick manufacturing in Bangladesh.
    Juel MAI; Mizan A; Ahmed T
    Waste Manag; 2017 Feb; 60():259-269. PubMed ID: 28081994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of recycled glass substitution on the physical and mechanical properties of clay bricks.
    Loryuenyong V; Panyachai T; Kaewsimork K; Siritai C
    Waste Manag; 2009 Oct; 29(10):2717-21. PubMed ID: 19545990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elucidating the effects of solar panel waste glass substitution on the physical and mechanical characteristics of clay bricks.
    Lin KL; Huang LS; Shie JL; Cheng CJ; Lee CH; Chang TC
    Environ Technol; 2013; 34(1-4):15-24. PubMed ID: 23530311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lightweight bricks manufactured from ground soil, textile sludge, and coal ash.
    Chen C; Wu H
    Environ Technol; 2018 Jun; 39(11):1359-1367. PubMed ID: 28488931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on preparation of brick blocks by using construction waste and sludge.
    Vaithiyasubramanian R; Srinivasan D; Kanagarajan AK
    Environ Sci Pollut Res Int; 2022 Oct; 29(48):72528-72544. PubMed ID: 35608763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of textile effluent treatment plant sludge and its industrial application in fired clay bricks with health risk assessment.
    Fatema K; Nayem MA; Sanzid MS
    J Environ Manage; 2024 Feb; 351():119965. PubMed ID: 38171128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilization of Savannah Harbor river sediment as the primary raw material in production of fired brick.
    Mezencevova A; Yeboah NN; Burns SE; Kahn LF; Kurtis KE
    J Environ Manage; 2012 Dec; 113():128-36. PubMed ID: 23017584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization and recycling of textile sludge for energy-efficient brick production in Ethiopia.
    Beshah DA; Tiruye GA; Mekonnen YS
    Environ Sci Pollut Res Int; 2021 Apr; 28(13):16272-16281. PubMed ID: 33387312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential re-use of sewage sludge as a raw material in the production of eco-friendly bricks.
    Zat T; Bandieira M; Sattler N; Segadães AM; Cruz RCD; Mohamad G; Rodríguez ED
    J Environ Manage; 2021 Nov; 297():113238. PubMed ID: 34274769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of using arsenic-iron sludge wastes in brick making.
    Hassan KM; Fukushi K; Turikuzzaman K; Moniruzzaman SM
    Waste Manag; 2014 Jun; 34(6):1072-8. PubMed ID: 24129213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recycling of sewage sludge in clay-free thermal insulation brick: assessment of microstructure, performance, and environment impact.
    Wu K; Hu Y; Xu L; Zhang L; Zhang X; Su Y; Yang Z
    Environ Sci Pollut Res Int; 2022 Dec; 29(59):89184-89197. PubMed ID: 35849240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sludge valorization from wastewater treatment plant to its application on the ceramic industry.
    Martínez-García C; Eliche-Quesada D; Pérez-Villarejo L; Iglesias-Godino FJ; Corpas-Iglesias FA
    J Environ Manage; 2012 Mar; 95 Suppl():S343-8. PubMed ID: 21723033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recycling of waste glass and incinerated sewage sludge ash in glass-ceramics.
    Huang Y; Chen Z; Liu Y; Lu JX; Bian Z; Yio M; Cheeseman C; Wang F; Sun Poon C
    Waste Manag; 2024 Feb; 174():229-239. PubMed ID: 38070442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reuse of waste sludge from water treatment plants and fly ash for manufacturing of adobe bricks.
    Minh Trang NT; Dao Ho NA; Babel S
    Chemosphere; 2021 Dec; 284():131367. PubMed ID: 34323781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sustainable Use of Marble Waste in Industrial Production of Fired Clay Bricks and Its Employment for Treatment of Flue Gases.
    Ahmad S; Hassan Shah MU; Ullah A; Shah SN; Rehan MS; Khan IA; Ahmad MI
    ACS Omega; 2021 Sep; 6(35):22559-22569. PubMed ID: 34514228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of bottom ash from olive pomace combustion in the production of eco-friendly fired clay bricks.
    Eliche-Quesada D; Leite-Costa J
    Waste Manag; 2016 Feb; 48():323-333. PubMed ID: 26653359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.