BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 30415234)

  • 1. Stromal protein βig-h3 reprogrammes tumour microenvironment in pancreatic cancer.
    Goehrig D; Nigri J; Samain R; Wu Z; Cappello P; Gabiane G; Zhang X; Zhao Y; Kim IS; Chanal M; Curto R; Hervieu V; de La Fouchardière C; Novelli F; Milani P; Tomasini R; Bousquet C; Bertolino P; Hennino A
    Gut; 2019 Apr; 68(4):693-707. PubMed ID: 30415234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cadherin 11 Promotes Immunosuppression and Extracellular Matrix Deposition to Support Growth of Pancreatic Tumors and Resistance to Gemcitabine in Mice.
    Peran I; Dakshanamurthy S; McCoy MD; Mavropoulos A; Allo B; Sebastian A; Hum NR; Sprague SC; Martin KA; Pishvaian MJ; Vietsch EE; Wellstein A; Atkins MB; Weiner LM; Quong AA; Loots GG; Yoo SS; Assefnia S; Byers SW
    Gastroenterology; 2021 Mar; 160(4):1359-1372.e13. PubMed ID: 33307028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the establishment of an immunosuppressive environment in pancreatic cancer.
    Zhang Y; Velez-Delgado A; Mathew E; Li D; Mendez FM; Flannagan K; Rhim AD; Simeone DM; Beatty GL; Pasca di Magliano M
    Gut; 2017 Jan; 66(1):124-136. PubMed ID: 27402485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exclusion of T Cells From Pancreatic Carcinomas in Mice Is Regulated by Ly6C(low) F4/80(+) Extratumoral Macrophages.
    Beatty GL; Winograd R; Evans RA; Long KB; Luque SL; Lee JW; Clendenin C; Gladney WL; Knoblock DM; Guirnalda PD; Vonderheide RH
    Gastroenterology; 2015 Jul; 149(1):201-10. PubMed ID: 25888329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IL-6 and PD-L1 antibody blockade combination therapy reduces tumour progression in murine models of pancreatic cancer.
    Mace TA; Shakya R; Pitarresi JR; Swanson B; McQuinn CW; Loftus S; Nordquist E; Cruz-Monserrate Z; Yu L; Young G; Zhong X; Zimmers TA; Ostrowski MC; Ludwig T; Bloomston M; Bekaii-Saab T; Lesinski GB
    Gut; 2018 Feb; 67(2):320-332. PubMed ID: 27797936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tumor Cell-Derived IL1β Promotes Desmoplasia and Immune Suppression in Pancreatic Cancer.
    Das S; Shapiro B; Vucic EA; Vogt S; Bar-Sagi D
    Cancer Res; 2020 Mar; 80(5):1088-1101. PubMed ID: 31915130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiation Therapy Induces Macrophages to Suppress T-Cell Responses Against Pancreatic Tumors in Mice.
    Seifert L; Werba G; Tiwari S; Giao Ly NN; Nguy S; Alothman S; Alqunaibit D; Avanzi A; Daley D; Barilla R; Tippens D; Torres-Hernandez A; Hundeyin M; Mani VR; Hajdu C; Pellicciotta I; Oh P; Du K; Miller G
    Gastroenterology; 2016 Jun; 150(7):1659-1672.e5. PubMed ID: 26946344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antifibrotic Therapy Disrupts Stromal Barriers and Modulates the Immune Landscape in Pancreatic Ductal Adenocarcinoma.
    Elahi-Gedwillo KY; Carlson M; Zettervall J; Provenzano PP
    Cancer Res; 2019 Jan; 79(2):372-386. PubMed ID: 30401713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunoevolution of mouse pancreatic organoid isografts from preinvasive to metastatic disease.
    Filippini D; Agosto S; Delfino P; Simbolo M; Piro G; Rusev B; Veghini L; Cantù C; Lupo F; Ugel S; De Sanctis F; Bronte V; Milella M; Tortora G; Scarpa A; Carbone C; Corbo V
    Sci Rep; 2019 Aug; 9(1):12286. PubMed ID: 31439856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic identification of betaig-h3 as a lysophosphatidic acid-induced secreted protein of human mesenchymal stem cells: paracrine activation of A549 lung adenocarcinoma cells by betaig-h3.
    Shin SH; Kim J; Heo SC; Kwon YW; Kim YM; Kim IS; Lee TG; Kim JH
    Mol Cell Proteomics; 2012 Feb; 11(2):M111.012385. PubMed ID: 22159598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interleukin-1β-induced pancreatitis promotes pancreatic ductal adenocarcinoma via B lymphocyte-mediated immune suppression.
    Takahashi R; Macchini M; Sunagawa M; Jiang Z; Tanaka T; Valenti G; Renz BW; White RA; Hayakawa Y; Westphalen CB; Tailor Y; Iuga AC; Gonda TA; Genkinger J; Olive KP; Wang TC
    Gut; 2021 Feb; 70(2):330-341. PubMed ID: 32393543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A transforming growth factor-beta-induced protein stimulates endocytosis and is up-regulated in immature dendritic cells.
    Cao W; Tan P; Lee CH; Zhang H; Lu J
    Blood; 2006 Apr; 107(7):2777-85. PubMed ID: 16368891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activating Immune Recognition in Pancreatic Ductal Adenocarcinoma via Autophagy Inhibition, MEK Blockade, and CD40 Agonism.
    Jiang H; Courau T; Borison J; Ritchie AJ; Mayer AT; Krummel MF; Collisson EA
    Gastroenterology; 2022 Feb; 162(2):590-603.e14. PubMed ID: 34627860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induction and expression of betaig-h3 in pancreatic cancer cells.
    Schneider D; Kleeff J; Berberat PO; Zhu Z; Korc M; Friess H; Büchler MW
    Biochim Biophys Acta; 2002 Oct; 1588(1):1-6. PubMed ID: 12379307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combination of PD-1 Inhibitor and OX40 Agonist Induces Tumor Rejection and Immune Memory in Mouse Models of Pancreatic Cancer.
    Ma Y; Li J; Wang H; Chiu Y; Kingsley CV; Fry D; Delaney SN; Wei SC; Zhang J; Maitra A; Yee C
    Gastroenterology; 2020 Jul; 159(1):306-319.e12. PubMed ID: 32179091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-cell RNA sequencing reveals compartmental remodeling of tumor-infiltrating immune cells induced by anti-CD47 targeting in pancreatic cancer.
    Pan Y; Lu F; Fei Q; Yu X; Xiong P; Yu X; Dang Y; Hou Z; Lin W; Lin X; Zhang Z; Pan M; Huang H
    J Hematol Oncol; 2019 Nov; 12(1):124. PubMed ID: 31771616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunophenotyping of Orthotopic Homograft (Syngeneic) of Murine Primary KPC Pancreatic Ductal Adenocarcinoma by Flow Cytometry.
    An X; Ouyang X; Zhang H; Li T; Huang YY; Li Z; Zhou D; Li QX
    J Vis Exp; 2018 Oct; (140):. PubMed ID: 30371656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of P21-activated kinases 1 and 4 synergistically suppresses the growth of pancreatic cancer by stimulating anti-tumour immunity.
    Ma Y; Dumesny C; Dong L; Ang CS; Asadi K; Zhan Y; Nikfarjam M; He H
    Cell Commun Signal; 2024 May; 22(1):287. PubMed ID: 38797819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of Activin Receptor Type 1B Accelerates Development of Intraductal Papillary Mucinous Neoplasms in Mice With Activated KRAS.
    Qiu W; Tang SM; Lee S; Turk AT; Sireci AN; Qiu A; Rose C; Xie C; Kitajewski J; Wen HJ; Crawford HC; Sims PA; Hruban RH; Remotti HE; Su GH
    Gastroenterology; 2016 Jan; 150(1):218-228.e12. PubMed ID: 26408346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer.
    Feig C; Jones JO; Kraman M; Wells RJ; Deonarine A; Chan DS; Connell CM; Roberts EW; Zhao Q; Caballero OL; Teichmann SA; Janowitz T; Jodrell DI; Tuveson DA; Fearon DT
    Proc Natl Acad Sci U S A; 2013 Dec; 110(50):20212-7. PubMed ID: 24277834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.