These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 30415338)

  • 1. Genetic Modification of Grapevine Embryogenic Cultures.
    Dhekney SA; Sessions SK; Brungart-Rosenberg M; Claflin C; Li ZT; Gray DJ
    Methods Mol Biol; 2019; 1864():191-201. PubMed ID: 30415338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Somatic Embryogenesis and Genetic Modification of Vitis.
    Dhekney SA; Li ZT; Grant TN; Gray DJ
    Methods Mol Biol; 2016; 1359():263-77. PubMed ID: 26619866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Initiation and transformation of grapevine embryogenic cultures.
    Dhekney SA; Li ZT; Dutt M; Gray DJ
    Methods Mol Biol; 2012; 847():215-25. PubMed ID: 22351011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Agrobacterium-mediated transformation of embryogenic cultures and plant regeneration in Vitis rotundifolia Michx. (muscadine grape).
    Dhekney SA; Li ZT; Dutt M; Gray DJ
    Plant Cell Rep; 2008 May; 27(5):865-72. PubMed ID: 18256837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic transformation of European chestnut somatic embryos with a native thaumatin-like protein (CsTL1) gene isolated from Castanea sativa seeds.
    Corredoira E; Valladares S; Allona I; Aragoncillo C; Vieitez AM; Ballester A
    Tree Physiol; 2012 Nov; 32(11):1389-402. PubMed ID: 23086811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Agrobacterium-mediated genetic transformation of Coffea arabica (L.) is greatly enhanced by using established embryogenic callus cultures.
    Ribas AF; Dechamp E; Champion A; Bertrand B; Combes MC; Verdeil JL; Lapeyre F; Lashermes P; Etienne H
    BMC Plant Biol; 2011 May; 11():92. PubMed ID: 21595964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An embryogenic suspension cell culture system for Agrobacterium-mediated transformation of citrus.
    Dutt M; Grosser JW
    Plant Cell Rep; 2010 Nov; 29(11):1251-60. PubMed ID: 20711728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Agrobacterium rhizogenes-mediated transformation of grain (Amaranthus hypochondriacus) and leafy (A. hybridus) amaranths.
    Castellanos-Arévalo AP; Estrada-Luna AA; Cabrera-Ponce JL; Valencia-Lozano E; Herrera-Ubaldo H; de Folter S; Blanco-Labra A; Délano-Frier JP
    Plant Cell Rep; 2020 Sep; 39(9):1143-1160. PubMed ID: 32430681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Agrobacterium-mediated genetic transformation of secondary somatic embryos in alfalfa].
    Liu W; Duan Q; Liu J; Sun Y
    Sheng Wu Gong Cheng Xue Bao; 2012 Feb; 28(2):203-13. PubMed ID: 22667122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protocol for Agrobacterium-Mediated Transformation and Transgenic Plant Production of Switchgrass.
    Chen Q; Song GQ
    Methods Mol Biol; 2019; 1864():105-115. PubMed ID: 30415332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Somatic Embryogenesis: Still a Relevant Technique in Citrus Improvement.
    Omar AA; Dutt M; Gmitter FG; Grosser JW
    Methods Mol Biol; 2016; 1359():289-327. PubMed ID: 26619868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of disease resistance in genetically modified grapevines correlates with the contents of viral sequences in the T-DNA and global genome methylation.
    Dal Bosco D; Sinski I; Ritschel PS; Camargo UA; Fajardo TVM; Harakava R; Quecini V
    Transgenic Res; 2018 Aug; 27(4):379-396. PubMed ID: 29876789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Agrobacterium-mediated Genetic Transformation of Cassava.
    Segatto R; Jones T; Stretch D; Albin C; Chauhan RD; Taylor NJ
    Curr Protoc; 2022 Dec; 2(12):e620. PubMed ID: 36507868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Grapevine (Vitis vinifera L.).
    Bouquet A; Torregrosa L; Iocco P; Thomas MR
    Methods Mol Biol; 2006; 344():273-85. PubMed ID: 17033070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of highly efficient genetic transformation protocols for table grape Sugraone and Crimson Seedless.
    Dabauza M; Velasco L
    Methods Mol Biol; 2012; 847():227-35. PubMed ID: 22351012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High frequency regeneration via direct somatic embryogenesis and efficient Agrobacterium-mediated genetic transformation of tobacco.
    Pathi KM; Tula S; Tuteja N
    Plant Signal Behav; 2013 Jun; 8(6):e24354. PubMed ID: 23518589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-transformation of grapevine somatic embryos to produce transgenic plants free of marker genes.
    Dutt M; Li ZT; Dhekney SA; Gray DJ
    Methods Mol Biol; 2012; 847():201-13. PubMed ID: 22351010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction of somatic embryogenesis in explants of shoot cultures established from adult Eucalyptus globulus and E. saligna × E. maidenii trees.
    Corredoira E; Ballester A; Ibarra M; Vieitez AM
    Tree Physiol; 2015 Jun; 35(6):678-90. PubMed ID: 25877768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soybean (Glycine max) transformation using immature cotyledon explants.
    Ko TS; Korban SS; Somers DA
    Methods Mol Biol; 2006; 343():397-405. PubMed ID: 16988362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant regeneration through somatic embryogenesis and genome size analysis of Coriandrum sativum L.
    Ali M; Mujib A; Tonk D; Zafar N
    Protoplasma; 2017 Jan; 254(1):343-352. PubMed ID: 26910351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.