BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 30415341)

  • 21. CRISPR/Cas-Mediated In Planta Gene Targeting.
    Schiml S; Fauser F; Puchta H
    Methods Mol Biol; 2017; 1610():3-11. PubMed ID: 28439853
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exogenous gene integration mediated by genome editing technologies in zebrafish.
    Morita H; Taimatsu K; Yanagi K; Kawahara A
    Bioengineered; 2017 May; 8(3):287-295. PubMed ID: 28272984
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DNA Repair Pathway Choices in CRISPR-Cas9-Mediated Genome Editing.
    Xue C; Greene EC
    Trends Genet; 2021 Jul; 37(7):639-656. PubMed ID: 33896583
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Problem of the Low Rates of CRISPR/Cas9-Mediated Knock-ins in Plants: Approaches and Solutions.
    Rozov SM; Permyakova NV; Deineko EV
    Int J Mol Sci; 2019 Jul; 20(13):. PubMed ID: 31323994
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing.
    Miyaoka Y; Berman JR; Cooper SB; Mayerl SJ; Chan AH; Zhang B; Karlin-Neumann GA; Conklin BR
    Sci Rep; 2016 Mar; 6():23549. PubMed ID: 27030102
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Endogenous sequence patterns predispose the repair modes of CRISPR/Cas9-induced DNA double-stranded breaks in Arabidopsis thaliana.
    Vu GTH; Cao HX; Fauser F; Reiss B; Puchta H; Schubert I
    Plant J; 2017 Oct; 92(1):57-67. PubMed ID: 28696528
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proximal binding of dCas9 at a DNA double strand break stimulates homology-directed repair as a local inhibitor of classical non-homologous end joining.
    Feng YL; Liu SC; Chen RD; Sun XN; Xiao JJ; Xiang JF; Xie AY
    Nucleic Acids Res; 2023 Apr; 51(6):2740-2758. PubMed ID: 36864759
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genome editing in plants via designed zinc finger nucleases.
    Petolino JF
    In Vitro Cell Dev Biol Plant; 2015; 51(1):1-8. PubMed ID: 25774080
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Precise Genome Modification via Sequence-Specific Nucleases-Mediated Gene Targeting for Crop Improvement.
    Sun Y; Li J; Xia L
    Front Plant Sci; 2016; 7():1928. PubMed ID: 28066481
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The CRISPR-Cas9 technology: Closer to the ultimate toolkit for targeted genome editing.
    Quétier F
    Plant Sci; 2016 Jan; 242():65-76. PubMed ID: 26566825
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deletion-bias in DNA double-strand break repair differentially contributes to plant genome shrinkage.
    Vu GTH; Cao HX; Reiss B; Schubert I
    New Phytol; 2017 Jun; 214(4):1712-1721. PubMed ID: 28245065
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Opportunities and challenges with CRISPR-Cas mediated homologous recombination based precise editing in plants and animals.
    Singh S; Chaudhary R; Deshmukh R; Tiwari S
    Plant Mol Biol; 2023 Jan; 111(1-2):1-20. PubMed ID: 36315306
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution.
    Puchta H
    J Exp Bot; 2005 Jan; 56(409):1-14. PubMed ID: 15557293
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Arabidopsis DNA double-strand break repair pathways.
    West CE; Waterworth WM; Sunderland PA; Bray CM
    Biochem Soc Trans; 2004 Dec; 32(Pt 6):964-6. PubMed ID: 15506937
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using Transcriptomic Analysis to Assess Double-Strand Break Repair Activity: Towards Precise in vivo Genome Editing.
    Pasquini G; Cora V; Swiersy A; Achberger K; Antkowiak L; Müller B; Wimmer T; Fraschka SA; Casadei N; Ueffing M; Liebau S; Stieger K; Busskamp V
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32085662
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gene Replacement by Intron Targeting with CRISPR-Cas9.
    Li J; Meng X; Li J; Gao C
    Methods Mol Biol; 2019; 1917():285-296. PubMed ID: 30610644
    [TBL] [Abstract][Full Text] [Related]  

  • 37. TALEN-Mediated Mutagenesis and Genome Editing.
    Ma AC; Chen Y; Blackburn PR; Ekker SC
    Methods Mol Biol; 2016; 1451():17-30. PubMed ID: 27464798
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gene editing using ssODNs with engineered endonucleases.
    Chen F; Pruett-Miller SM; Davis GD
    Methods Mol Biol; 2015; 1239():251-65. PubMed ID: 25408411
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Targeted Modification of Gene Function Exploiting Homology-Directed Repair of TALEN-Mediated Double-Strand Breaks in Barley.
    Budhagatapalli N; Rutten T; Gurushidze M; Kumlehn J; Hensel G
    G3 (Bethesda); 2015 Jul; 5(9):1857-63. PubMed ID: 26153077
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genome editing with engineered nucleases in plants.
    Osakabe Y; Osakabe K
    Plant Cell Physiol; 2015 Mar; 56(3):389-400. PubMed ID: 25416289
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.