BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 30415341)

  • 41. Programmable Site-Specific Nucleases for Targeted Genome Engineering in Higher Eukaryotes.
    Govindan G; Ramalingam S
    J Cell Physiol; 2016 Nov; 231(11):2380-92. PubMed ID: 26945523
    [TBL] [Abstract][Full Text] [Related]  

  • 42. DNA Double-Strand Break Repairs and Their Application in Plant DNA Integration.
    Shen H; Li Z
    Genes (Basel); 2022 Feb; 13(2):. PubMed ID: 35205367
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Different DNA repair pathways are involved in single-strand break-induced genomic changes in plants.
    Wolter F; Schindele P; Beying N; Scheben A; Puchta H
    Plant Cell; 2021 Nov; 33(11):3454-3469. PubMed ID: 34375428
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Research progress of genome editing and derivative technologies in plants.
    Shan QW; Gao CX
    Yi Chuan; 2015 Oct; 37(10):953-73. PubMed ID: 26496748
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny.
    Schiml S; Fauser F; Puchta H
    Plant J; 2014 Dec; 80(6):1139-50. PubMed ID: 25327456
    [TBL] [Abstract][Full Text] [Related]  

  • 46. CRISPR/Cas9: an advanced tool for editing plant genomes.
    Samanta MK; Dey A; Gayen S
    Transgenic Res; 2016 Oct; 25(5):561-73. PubMed ID: 27012546
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The CRISPR/Cas9 system for plant genome editing and beyond.
    Bortesi L; Fischer R
    Biotechnol Adv; 2015; 33(1):41-52. PubMed ID: 25536441
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanisms of DNA double strand break repair and chromosome aberration formation.
    Iliakis G; Wang H; Perrault AR; Boecker W; Rosidi B; Windhofer F; Wu W; Guan J; Terzoudi G; Pantelias G
    Cytogenet Genome Res; 2004; 104(1-4):14-20. PubMed ID: 15162010
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The democratization of gene editing: Insights from site-specific cleavage and double-strand break repair.
    Jasin M; Haber JE
    DNA Repair (Amst); 2016 Aug; 44():6-16. PubMed ID: 27261202
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Increasing frequencies of site-specific mutagenesis and gene targeting in Arabidopsis by manipulating DNA repair pathways.
    Qi Y; Zhang Y; Zhang F; Baller JA; Cleland SC; Ryu Y; Starker CG; Voytas DF
    Genome Res; 2013 Mar; 23(3):547-54. PubMed ID: 23282329
    [TBL] [Abstract][Full Text] [Related]  

  • 51. TALENs: customizable molecular DNA scissors for genome engineering of plants.
    Chen K; Gao C
    J Genet Genomics; 2013 Jun; 40(6):271-9. PubMed ID: 23790626
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biallelic Gene Targeting in Rice.
    Endo M; Mikami M; Toki S
    Plant Physiol; 2016 Feb; 170(2):667-77. PubMed ID: 26668334
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An update on precision genome editing by homology-directed repair in plants.
    Chen J; Li S; He Y; Li J; Xia L
    Plant Physiol; 2022 Mar; 188(4):1780-1794. PubMed ID: 35238390
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Zebrafish Genome Engineering Using the CRISPR-Cas9 System.
    Li M; Zhao L; Page-McCaw PS; Chen W
    Trends Genet; 2016 Dec; 32(12):815-827. PubMed ID: 27836208
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Precise and efficient nucleotide substitution near genomic nick via noncanonical homology-directed repair.
    Nakajima K; Zhou Y; Tomita A; Hirade Y; Gurumurthy CB; Nakada S
    Genome Res; 2018 Feb; 28(2):223-230. PubMed ID: 29273627
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Double-Stranded Break Repair in Mammalian Cells and Precise Genome Editing.
    Ali A; Xiao W; Babar ME; Bi Y
    Genes (Basel); 2022 Apr; 13(5):. PubMed ID: 35627122
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Simultaneous precise editing of multiple genes in human cells.
    Riesenberg S; Chintalapati M; Macak D; Kanis P; Maricic T; Pääbo S
    Nucleic Acids Res; 2019 Nov; 47(19):e116. PubMed ID: 31392986
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Progress of targeted genome modification approaches in higher plants.
    Cardi T; Neal Stewart C
    Plant Cell Rep; 2016 Jul; 35(7):1401-16. PubMed ID: 27025856
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Plant Biotechnology Applications of Zinc Finger Technology.
    Novak S
    Methods Mol Biol; 2019; 1864():295-310. PubMed ID: 30415344
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Towards targeted mutagenesis and gene replacement in plants.
    Tzfira T; White C
    Trends Biotechnol; 2005 Dec; 23(12):567-9. PubMed ID: 16243407
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.