These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 30415582)

  • 21. Proteomics for early prenatal screening of pregnancy complications: a 2017 perspective.
    Kolialexi A; Mavreli D; Papantoniou N
    Expert Rev Proteomics; 2017 Feb; 14(2):113-115. PubMed ID: 28002974
    [No Abstract]   [Full Text] [Related]  

  • 22. How do we improve treatments for patients with amyloidosis using proteomics?
    Lavatelli F; Merlini G
    Expert Rev Proteomics; 2017 Jul; 14(7):561-563. PubMed ID: 28524784
    [No Abstract]   [Full Text] [Related]  

  • 23. Applying proteomics to detect early signs of chronic kidney disease: where has the magic gone?
    Klein JB
    Expert Rev Proteomics; 2017 May; 14(5):387-390. PubMed ID: 28363249
    [No Abstract]   [Full Text] [Related]  

  • 24. Prospects for proteomics in kidney stone disease.
    Vinaiphat A; Thongboonkerd V
    Expert Rev Proteomics; 2017 Mar; 14(3):185-187. PubMed ID: 28092479
    [No Abstract]   [Full Text] [Related]  

  • 25. Approaches to identify and characterize microProteins and their potential uses in biotechnology.
    Bhati KK; Blaakmeer A; Paredes EB; Dolde U; Eguen T; Hong SY; Rodrigues V; Straub D; Sun B; Wenkel S
    Cell Mol Life Sci; 2018 Jul; 75(14):2529-2536. PubMed ID: 29670998
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conserved regulation of cardiac calcium uptake by peptides encoded in small open reading frames.
    Magny EG; Pueyo JI; Pearl FM; Cespedes MA; Niven JE; Bishop SA; Couso JP
    Science; 2013 Sep; 341(6150):1116-20. PubMed ID: 23970561
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integrative proteomic analysis reveals potential high-frequency alternative open reading frame-encoded peptides in human colorectal cancer.
    Wang T; Liu Y; Liu Q; Cummins S; Zhao M
    Life Sci; 2018 Dec; 215():182-189. PubMed ID: 30419281
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Small but Mighty: Functional Peptides Encoded by Small ORFs in Plants.
    Hsu PY; Benfey PN
    Proteomics; 2018 May; 18(10):e1700038. PubMed ID: 28759167
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proteomics and irritable bowel syndrome.
    Tsigaridas A; Papanikolaou IS; Vaiopoulou A; Anagnostopoulos AK; Viazis N; Karamanolis G; Karamanolis DG; Tsangaris GT; Mantzaris GJ; Gazouli M
    Expert Rev Proteomics; 2017 May; 14(5):461-468. PubMed ID: 28395553
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The power of tears: how tear proteomics research could revolutionize the clinic.
    Zhou L; Beuerman RW
    Expert Rev Proteomics; 2017 Mar; 14(3):189-191. PubMed ID: 28117610
    [No Abstract]   [Full Text] [Related]  

  • 31. The hidden world of membrane microproteins.
    Makarewich CA
    Exp Cell Res; 2020 Mar; 388(2):111853. PubMed ID: 31978386
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spit it out! How could the sputum proteome aid clinical research into pulmonary diseases?
    Iadarola P; Viglio S
    Expert Rev Proteomics; 2017 May; 14(5):391-393. PubMed ID: 28388247
    [No Abstract]   [Full Text] [Related]  

  • 33. Recent insights into human bronchial proteomics - how are we progressing and what is next?
    Tan HW; Xu YM; Wu DD; Lau ATY
    Expert Rev Proteomics; 2018 Feb; 15(2):113-130. PubMed ID: 29260600
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Defining the proteomic landscape of rheumatoid arthritis: progress and prospective clinical applications.
    Lourido L; Blanco FJ; Ruiz-Romero C
    Expert Rev Proteomics; 2017 May; 14(5):431-444. PubMed ID: 28425787
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Small Peptides as Newcomers in the Control of Drosophila Development.
    Zanet J; Chanut-Delalande H; Plaza S; Payre F
    Curr Top Dev Biol; 2016; 117():199-219. PubMed ID: 26969979
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-performance separations and mass spectrometric methods for high-throughput proteomics using accurate mass tags.
    Smith RD; Anderson GA; Lipton MS; Masselon C; Pasa-Tolic L; Udseth H; Belov M; Shen Y; Veenstra TD
    Adv Protein Chem; 2003; 65():85-131. PubMed ID: 12964367
    [No Abstract]   [Full Text] [Related]  

  • 37. Mapping Microproteins and ncRNA-Encoded Polypeptides in Different Mouse Tissues.
    Pan N; Wang Z; Wang B; Wan J; Wan C
    Front Cell Dev Biol; 2021; 9():687748. PubMed ID: 34381774
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Combination of DNA-peptide Probes and Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS): A Quasi-Targeted Proteomics Approach for Multiplexed MicroRNA Quantification.
    Xu F; Zhou W; Cao J; Xu Q; Jiang D; Chen Y
    Theranostics; 2017; 7(11):2849-2862. PubMed ID: 28824720
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mass spectrometry analysis for amyloidosis typing - is the future bright for its clinical implementation?
    Hill MM; Mollee PN
    Expert Rev Proteomics; 2017 Jul; 14(7):565-566. PubMed ID: 28438056
    [No Abstract]   [Full Text] [Related]  

  • 40. Can protein science solve the unmet needs in pancreatic cancer diagnosis and therapy?
    Ansari D; Sambergs F; Johansson L; Andersson R
    Expert Rev Proteomics; 2017 Jun; 14(6):469-471. PubMed ID: 28388239
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.