These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Transmission dynamics of Staphylococcus aureus and Streptococcus agalactiae in a Dutch dairy herd using an automatic milking system. Deng Z; Koop G; Hogeveen H; Fischer EAJ; van den Borne BHP; van der Tol R; Lam TJGM Prev Vet Med; 2021 Jul; 192():105384. PubMed ID: 34033990 [TBL] [Abstract][Full Text] [Related]
6. Subclinical mastitis in pastoralist dairy camel herds in Isiolo, Kenya: Prevalence, risk factors, and antimicrobial susceptibility. Seligsohn D; Nyman AK; Younan M; Sake W; Persson Y; Bornstein S; Maichomo M; de Verdier K; Morrell JM; Chenais E J Dairy Sci; 2020 May; 103(5):4717-4731. PubMed ID: 32171518 [TBL] [Abstract][Full Text] [Related]
7. Expert evaluation of different infection types in dairy cow quarters naturally infected with Staphylococcus aureus or Streptococcus agalactiae. Svennesen L; Lund TB; Skarbye AP; Klaas IC; Nielsen SS Prev Vet Med; 2019 Jun; 167():16-23. PubMed ID: 31027715 [TBL] [Abstract][Full Text] [Related]
8. Genetic relatedness and virulence factors of bovine Staphylococcus aureus isolated from teat skin and milk. da Costa LB; Rajala-Schultz PJ; Hoet A; Seo KS; Fogt K; Moon BS J Dairy Sci; 2014 Nov; 97(11):6907-16. PubMed ID: 25242420 [TBL] [Abstract][Full Text] [Related]
9. Herd management and prevalence of mastitis in dairy herds with high and low somatic cell counts. Erskine RJ; Eberhart RJ; Hutchinson LJ; Spencer SB J Am Vet Med Assoc; 1987 Jun; 190(11):1411-6. PubMed ID: 3301762 [TBL] [Abstract][Full Text] [Related]
10. Short communication: comparing real-time PCR and bacteriological cultures for Streptococcus agalactiae and Staphylococcus aureus in bulk-tank milk samples. Zanardi G; Caminiti A; Delle Donne G; Moroni P; Santi A; Galletti G; Tamba M; Bolzoni G; Bertocchi L J Dairy Sci; 2014 Sep; 97(9):5592-8. PubMed ID: 24997661 [TBL] [Abstract][Full Text] [Related]
11. Udder shape and teat-end lesions as potential risk factors for high somatic cell counts and intra-mammary infections in dairy cows. Bhutto AL; Murray RD; Woldehiwet Z Vet J; 2010 Jan; 183(1):63-67. PubMed ID: 18951819 [TBL] [Abstract][Full Text] [Related]
12. Prevalence of mastitis pathogens in Ragusa, Sicily, from 2000 to 2006. Ferguson JD; Azzaro G; Gambina M; Licitra G J Dairy Sci; 2007 Dec; 90(12):5798-813. PubMed ID: 18024774 [TBL] [Abstract][Full Text] [Related]
13. Communications of Staphylococcus aureus and non-aureus Staphylococcus species from bovine intramammary infections and teat apex colonization. Mahmmod YS; Klaas IC; Svennesen L; Pedersen K; Ingmer H J Dairy Sci; 2018 Aug; 101(8):7322-7333. PubMed ID: 29778469 [TBL] [Abstract][Full Text] [Related]
14. Cost-effectiveness of diagnostic strategies using quantitative real-time PCR and bacterial culture to identify contagious mastitis cases in large dairy herds. Murai K; Lehenbauer TW; Champagne JD; Glenn K; Aly SS Prev Vet Med; 2014 Mar; 113(4):522-35. PubMed ID: 24485275 [TBL] [Abstract][Full Text] [Related]
15. [Relationship between morphological characteristics of the teat duct and prevalence of intramammary infections with Streptococcus agalactiae in dairy cows]. Falkenberg U; Tenhagen BA; Baumgärtner B; Heuwieser W Dtsch Tierarztl Wochenschr; 2004 Sep; 111(9):355-8. PubMed ID: 15503535 [TBL] [Abstract][Full Text] [Related]
16. Udder infections with Staphylococcus aureus, Streptococcus dysgalactiae, and Streptococcus uberis at calving in dairy herds with suboptimal udder health. Lundberg Å; Nyman AK; Aspán A; Börjesson S; Unnerstad HE; Waller KP J Dairy Sci; 2016 Mar; 99(3):2102-2117. PubMed ID: 26805990 [TBL] [Abstract][Full Text] [Related]
17. Germicidal activity of a chlorous acid-chlorine dioxide teat dip and a sodium chlorite teat dip during experimental challenge with Staphylococcus aureus and Streptococcus agalactiae. Boddie RL; Nickerson SC; Adkinson RW J Dairy Sci; 1998 Aug; 81(8):2293-8. PubMed ID: 9749396 [TBL] [Abstract][Full Text] [Related]
18. The role of teat skin contamination in the epidemiology of Staphylococcus aureus intramammary infections. Piccinini R; Cesaris L; Daprà V; Borromeo V; Picozzi C; Secchi C; Zecconi A J Dairy Res; 2009 Feb; 76(1):36-41. PubMed ID: 18922199 [TBL] [Abstract][Full Text] [Related]
19. Cross-sectional study of the relationship between cloth udder towel management, towel bacteria counts, and intramammary infection in late-lactation dairy cows. Rowe SM; Godden SM; Royster E; Timmerman J; Boyle M J Dairy Sci; 2019 Dec; 102(12):11401-11413. PubMed ID: 31606221 [TBL] [Abstract][Full Text] [Related]
20. Fomites and reservoirs of Staphylococcus aureus causing intramammary infections as determined by phage typing: the effect of milking time hygiene practices. Fox LK; Gershman M; Hancock DD; Hutton CT Cornell Vet; 1991 Apr; 81(2):183-93. PubMed ID: 2029841 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]