These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Roles of the ClpX IGF loops in ClpP association, dissociation, and protein degradation. Amor AJ; Schmitz KR; Baker TA; Sauer RT Protein Sci; 2019 Apr; 28(4):756-765. PubMed ID: 30767302 [TBL] [Abstract][Full Text] [Related]
4. The Mycobacterium tuberculosis ClpP1P2 Protease Interacts Asymmetrically with Its ATPase Partners ClpX and ClpC1. Leodolter J; Warweg J; Weber-Ban E PLoS One; 2015; 10(5):e0125345. PubMed ID: 25933022 [TBL] [Abstract][Full Text] [Related]
5. Cryo-EM structure of the ClpXP protein degradation machinery. Gatsogiannis C; Balogh D; Merino F; Sieber SA; Raunser S Nat Struct Mol Biol; 2019 Oct; 26(10):946-954. PubMed ID: 31582852 [TBL] [Abstract][Full Text] [Related]
6. Highly Dynamic Interactions Maintain Kinetic Stability of the ClpXP Protease During the ATP-Fueled Mechanical Cycle. Amor AJ; Schmitz KR; Sello JK; Baker TA; Sauer RT ACS Chem Biol; 2016 Jun; 11(6):1552-1560. PubMed ID: 27003103 [TBL] [Abstract][Full Text] [Related]
7. Distinct static and dynamic interactions control ATPase-peptidase communication in a AAA+ protease. Martin A; Baker TA; Sauer RT Mol Cell; 2007 Jul; 27(1):41-52. PubMed ID: 17612489 [TBL] [Abstract][Full Text] [Related]
8. ClpAP proteolysis does not require rotation of the ClpA unfoldase relative to ClpP. Kim S; Zuromski KL; Bell TA; Sauer RT; Baker TA Elife; 2020 Dec; 9():. PubMed ID: 33258771 [TBL] [Abstract][Full Text] [Related]
9. A processive rotary mechanism couples substrate unfolding and proteolysis in the ClpXP degradation machinery. Ripstein ZA; Vahidi S; Houry WA; Rubinstein JL; Kay LE Elife; 2020 Jan; 9():. PubMed ID: 31916936 [TBL] [Abstract][Full Text] [Related]
10. Large nucleotide-dependent movement of the N-terminal domain of the ClpX chaperone. Thibault G; Tsitrin Y; Davidson T; Gribun A; Houry WA EMBO J; 2006 Jul; 25(14):3367-76. PubMed ID: 16810315 [TBL] [Abstract][Full Text] [Related]
11. Structures of the ATP-fueled ClpXP proteolytic machine bound to protein substrate. Fei X; Bell TA; Jenni S; Stinson BM; Baker TA; Harrison SC; Sauer RT Elife; 2020 Feb; 9():. PubMed ID: 32108573 [TBL] [Abstract][Full Text] [Related]
12. ClpA and ClpX ATPases bind simultaneously to opposite ends of ClpP peptidase to form active hybrid complexes. Ortega J; Lee HS; Maurizi MR; Steven AC J Struct Biol; 2004; 146(1-2):217-26. PubMed ID: 15037252 [TBL] [Abstract][Full Text] [Related]
13. Initial Characterization of the Two ClpP Paralogs of Wood NA; Chung KY; Blocker AM; Rodrigues de Almeida N; Conda-Sheridan M; Fisher DJ; Ouellette SP J Bacteriol; 2019 Jan; 201(2):. PubMed ID: 30396899 [TBL] [Abstract][Full Text] [Related]
16. Selective Activation of Human Caseinolytic Protease P (ClpP). Stahl M; Korotkov VS; Balogh D; Kick LM; Gersch M; Pahl A; Kielkowski P; Richter K; Schneider S; Sieber SA Angew Chem Int Ed Engl; 2018 Oct; 57(44):14602-14607. PubMed ID: 30129683 [TBL] [Abstract][Full Text] [Related]
17. Progress and prospect of single-molecular ClpX ATPase researching system-a mini-review. Kang ZH; Liu YT; Gou Y; Deng QR; Hu ZY; Li GR Gene; 2021 Mar; 774():145420. PubMed ID: 33434627 [TBL] [Abstract][Full Text] [Related]
18. Communication between ClpX and ClpP during substrate processing and degradation. Joshi SA; Hersch GL; Baker TA; Sauer RT Nat Struct Mol Biol; 2004 May; 11(5):404-11. PubMed ID: 15064753 [TBL] [Abstract][Full Text] [Related]
19. The ClpXP protease is dispensable for degradation of unfolded proteins in Staphylococcus aureus. Stahlhut SG; Alqarzaee AA; Jensen C; Fisker NS; Pereira AR; Pinho MG; Thomas VC; Frees D Sci Rep; 2017 Sep; 7(1):11739. PubMed ID: 28924169 [TBL] [Abstract][Full Text] [Related]
20. ClpX shifts into high gear to unfold stable proteins. Maurizi MR; Stan G Cell; 2013 Oct; 155(3):502-4. PubMed ID: 24243009 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]