These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
761 related articles for article (PubMed ID: 30415973)
1. Is knee neuromuscular activity related to anterior cruciate ligament injury risk? A pilot study. Smeets A; Malfait B; Dingenen B; Robinson MA; Vanrenterghem J; Peers K; Nijs S; Vereecken S; Staes F; Verschueren S Knee; 2019 Jan; 26(1):40-51. PubMed ID: 30415973 [TBL] [Abstract][Full Text] [Related]
2. Knee and Hip Joint Kinematics Predict Quadriceps and Hamstrings Neuromuscular Activation Patterns in Drop Jump Landings. Malfait B; Dingenen B; Smeets A; Staes F; Pataky T; Robinson MA; Vanrenterghem J; Verschueren S PLoS One; 2016; 11(4):e0153737. PubMed ID: 27101130 [TBL] [Abstract][Full Text] [Related]
3. Neuromuscular and biomechanical landing performance subsequent to ipsilateral semitendinosus and gracilis autograft anterior cruciate ligament reconstruction. Vairo GL; Myers JB; Sell TC; Fu FH; Harner CD; Lephart SM Knee Surg Sports Traumatol Arthrosc; 2008 Jan; 16(1):2-14. PubMed ID: 17973098 [TBL] [Abstract][Full Text] [Related]
4. Kinematics and electromyography of landing preparation in vertical stop-jump: risks for noncontact anterior cruciate ligament injury. Chappell JD; Creighton RA; Giuliani C; Yu B; Garrett WE Am J Sports Med; 2007 Feb; 35(2):235-41. PubMed ID: 17092926 [TBL] [Abstract][Full Text] [Related]
5. High knee abduction moments are common risk factors for patellofemoral pain (PFP) and anterior cruciate ligament (ACL) injury in girls: is PFP itself a predictor for subsequent ACL injury? Myer GD; Ford KR; Di Stasi SL; Foss KD; Micheli LJ; Hewett TE Br J Sports Med; 2015 Jan; 49(2):118-22. PubMed ID: 24687011 [TBL] [Abstract][Full Text] [Related]
9. Young Athletes With Quadriceps Femoris Strength Asymmetry at Return to Sport After Anterior Cruciate Ligament Reconstruction Demonstrate Asymmetric Single-Leg Drop-Landing Mechanics. Ithurburn MP; Paterno MV; Ford KR; Hewett TE; Schmitt LC Am J Sports Med; 2015 Nov; 43(11):2727-37. PubMed ID: 26359376 [TBL] [Abstract][Full Text] [Related]
10. Single-Joint and Whole-Body Movement Changes in Anterior Cruciate Ligament Athletes Returning to Sport. Smeets A; Verheul J; Vanrenterghem J; Staes F; Vandenneucker H; Claes S; Verschueren S Med Sci Sports Exerc; 2020 Aug; 52(8):1658-1667. PubMed ID: 32079913 [TBL] [Abstract][Full Text] [Related]
11. Thigh muscle activity, knee motion, and impact force during side-step pivoting in agility-trained female basketball players. Wilderman DR; Ross SE; Padua DA J Athl Train; 2009; 44(1):14-25. PubMed ID: 19180214 [TBL] [Abstract][Full Text] [Related]
12. Elevated gastrocnemius forces compensate for decreased hamstrings forces during the weight-acceptance phase of single-leg jump landing: implications for anterior cruciate ligament injury risk. Morgan KD; Donnelly CJ; Reinbolt JA J Biomech; 2014 Oct; 47(13):3295-302. PubMed ID: 25218505 [TBL] [Abstract][Full Text] [Related]
13. Effects of evidence-based prevention training on neuromuscular and biomechanical risk factors for ACL injury in adolescent female athletes: a randomised controlled trial. Zebis MK; Andersen LL; Brandt M; Myklebust G; Bencke J; Lauridsen HB; Bandholm T; Thorborg K; Hölmich P; Aagaard P Br J Sports Med; 2016 May; 50(9):552-7. PubMed ID: 26400955 [TBL] [Abstract][Full Text] [Related]
14. Dynamic Neuromuscular Control of the Lower Limbs in Response to Unexpected Single-Planar versus Multi-Planar Support Perturbations in Young, Active Adults. Malfait B; Staes F; de Vries A; Smeets A; Hawken M; Robinson MA; Vanrenterghem J; Verschueren S PLoS One; 2015; 10(7):e0133147. PubMed ID: 26222790 [TBL] [Abstract][Full Text] [Related]
15. The effects of a subsequent jump on the knee abduction angle during the early landing phase. Ishida T; Koshino Y; Yamanaka M; Ueno R; Taniguchi S; Samukawa M; Saito H; Matsumoto H; Aoki Y; Tohyama H BMC Musculoskelet Disord; 2018 Oct; 19(1):379. PubMed ID: 30342498 [TBL] [Abstract][Full Text] [Related]
16. Hip Muscle Strength Predicts Noncontact Anterior Cruciate Ligament Injury in Male and Female Athletes: A Prospective Study. Khayambashi K; Ghoddosi N; Straub RK; Powers CM Am J Sports Med; 2016 Feb; 44(2):355-61. PubMed ID: 26646514 [TBL] [Abstract][Full Text] [Related]
17. Differences in ACL biomechanical risk factors between field hockey and lacrosse female athletes. Braun HJ; Shultz R; Malone M; Leatherwood WE; Silder A; Dragoo JL Knee Surg Sports Traumatol Arthrosc; 2015 Apr; 23(4):1065-70. PubMed ID: 24493257 [TBL] [Abstract][Full Text] [Related]
18. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Hewett TE; Myer GD; Ford KR; Heidt RS; Colosimo AJ; McLean SG; van den Bogert AJ; Paterno MV; Succop P Am J Sports Med; 2005 Apr; 33(4):492-501. PubMed ID: 15722287 [TBL] [Abstract][Full Text] [Related]
19. A musculoskeletal modeling approach for estimating anterior cruciate ligament strains and knee anterior-posterior shear forces in stop-jumps performed by young recreational female athletes. Kar J; Quesada PM Ann Biomed Eng; 2013 Feb; 41(2):338-48. PubMed ID: 23015067 [TBL] [Abstract][Full Text] [Related]
20. Effect of knee flexion angle on ground reaction forces, knee moments and muscle co-contraction during an impact-like deceleration landing: implications for the non-contact mechanism of ACL injury. Podraza JT; White SC Knee; 2010 Aug; 17(4):291-5. PubMed ID: 20303276 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]