BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 3041641)

  • 21. Measurements of in vivo 31P nuclear magnetic resonance spectra in neuroectodermal tumors for the evaluation of the effects of chemotherapy.
    Naruse S; Hirakawa K; Horikawa Y; Tanaka C; Higuchi T; Ueda S; Nishikawa H; Watari H
    Cancer Res; 1985 Jun; 45(6):2429-33. PubMed ID: 3986784
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cardiac high-energy phosphate metabolism in patients with aortic valve disease assessed by 31P-magnetic resonance spectroscopy.
    Neubauer S; Horn M; Pabst T; Harre K; Strömer H; Bertsch G; Sandstede J; Ertl G; Hahn D; Kochsiek K
    J Investig Med; 1997 Oct; 45(8):453-62. PubMed ID: 9394098
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [31P-NMR analysis of high energy phosphorous compounds (ATP and phosphocreatine) in the living rat brain--effects of halothane anesthesia and a hypoxic condition].
    Yuasa T; Miyatake T; Kuwabara T; Umeda M; Eguchi K
    No To Shinkei; 1983 Nov; 35(11):1089-95. PubMed ID: 6661335
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Insulin improves cardiac contractile function and oxygen utilization efficiency during moderate ischemia without compromising myocardial energetics.
    Tune JD; Mallet RT; Downey HF
    J Mol Cell Cardiol; 1998 Oct; 30(10):2025-35. PubMed ID: 9799656
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of fasting, hypocaloric feeding, and refeeding on the energetics of stimulated rat muscle as assessed by nuclear magnetic resonance spectroscopy.
    Mijan de la Torre A; Madapallimattam A; Cross A; Armstrong RL; Jeejeebhoy KN
    J Clin Invest; 1993 Jul; 92(1):114-21. PubMed ID: 8325976
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessment of tumor energy and oxygenation status by bioluminescence, nuclear magnetic resonance spectroscopy, and cryospectrophotometry.
    Mueller-Klieser W; Schaefer C; Walenta S; Rofstad EK; Fenton BM; Sutherland RM
    Cancer Res; 1990 Mar; 50(6):1681-5. PubMed ID: 2306721
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rhodamine 6G, inhibitor of both H+-ejections from mitochondria energized with ATP and with respiratory substrates.
    Higuti T; Niimi S; Saito R; Nakasima S; Ohe T; Tani I; Yoshimura T
    Biochim Biophys Acta; 1980 Dec; 593(2):463-7. PubMed ID: 7236646
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alterations in glucose metabolism by cyclosporine in rat brain slices link to oxidative stress: interactions with mTOR inhibitors.
    Christians U; Gottschalk S; Miljus J; Hainz C; Benet LZ; Leibfritz D; Serkova N
    Br J Pharmacol; 2004 Oct; 143(3):388-96. PubMed ID: 15339861
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The inhibitory effect of rhodamine 123 on DNA and RNA synthesis of E. coli in vitro.
    Lameh J; Chuang RY; Krag D; Chase D
    Proc West Pharmacol Soc; 1987; 30():103-7. PubMed ID: 2442766
    [No Abstract]   [Full Text] [Related]  

  • 30. Rhodamine 123 inhibits bioenergetic function in isolated rat liver mitochondria.
    Modica-Napolitano JS; Weiss MJ; Chen LB; Aprille JR
    Biochem Biophys Res Commun; 1984 Feb; 118(3):717-23. PubMed ID: 6200108
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Effects of insulin on hepatic energy metabolism of tumor-bearing pats: preliminary report].
    Tsuburaya A; Noguchi Y; Okamoto T; Yoshikawa T; Nomura K; Makino T; Matsumoto A
    Nihon Geka Gakkai Zasshi; 1995 Dec; 96(12):820. PubMed ID: 8587577
    [No Abstract]   [Full Text] [Related]  

  • 32. Functional impairment induced by lipophilic cationic compounds on mitochondria.
    Singh G; Shaughnessy SG
    Can J Physiol Pharmacol; 1988 Mar; 66(3):243-5. PubMed ID: 2968137
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Resveratrol plus ethanol counteract the ethanol-induced impairment of energy metabolism: ³¹P NMR study of ATP and sn-glycerol-3-phosphate on isolated and perfused rat liver.
    Gallis JL; Serhan N; Gin H; Couzigou P; Beauvieux MC
    Pharmacol Res; 2012 Mar; 65(3):387-95. PubMed ID: 22227530
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Change in energy metabolism of proliferating granuloma tissue in response to insulin and 2-deoxyglucose.
    Murakami K; Ishibashi S
    Horm Metab Res; 1972 Mar; 4(2):77-82. PubMed ID: 5028225
    [No Abstract]   [Full Text] [Related]  

  • 35. In vitro inhibition of rat brain protein kinase C by rhodamine 6G. Profound effects of the lipid cofactor on the inhibition of the enzyme.
    O'Brian CA; Weinstein IB
    Biochem Pharmacol; 1987 Apr; 36(8):1231-5. PubMed ID: 3109437
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Energetics of nutrition and polyamine-related tumor growth alterations in experimental cancer.
    Westin T; Soussi B; Idström JP; Lindnér P; Edström S; Lydén E; Gustavsson B; Hafström L; Lundholm K
    Br J Cancer; 1993 Oct; 68(4):662-7. PubMed ID: 8398689
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The mitochondrial probe rhodamine 123 inhibits in isolated hepatocytes the degradation of short-lived proteins.
    Vargas JL; Roche E; Knecht E; Aniento F; Grisolía S
    FEBS Lett; 1988 Jun; 233(2):259-62. PubMed ID: 3384093
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 31P NMR spectroscopy of an experimentally induced intracerebral tumor in mice.
    Ross BD; Higgins RJ; Conley FK; True NS
    Magn Reson Med; 1987 Apr; 4(4):323-32. PubMed ID: 3586979
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Low concentrations of Rhodamine-6G selectively destroy tumor cells and improve survival of melanoma transplanted mice.
    Kutushov M; Gorelik O
    Neoplasma; 2013; 60(3):262-73. PubMed ID: 23373995
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vitro photosensitizing properties of rhodamine 123 on different human tumor cell lines.
    Melloni E; Dasdia T; Fava G; Rocca E; Zunino F; Marchesini R
    Photochem Photobiol; 1988 Sep; 48(3):311-4. PubMed ID: 3222341
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.