These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 30416644)

  • 1.
    Tabatabai B; Chen H; Lu J; Giwa-Otusajo J; McKenna AM; Shrivastava AK; Sitther V
    Bioenergy Res; 2018 Sep; 11(3):528-537. PubMed ID: 30416644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoparticle-mediated Impact on Growth and Fatty Acid Methyl Ester Composition in the Cyanobacterium
    Tabatabai B; Fathabad SG; Bonyi E; Rajini S; Aslan K; Sitther V
    Bioenergy Res; 2019 Jun; 12():409-418. PubMed ID: 31984113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Augmenting Fremyella diplosiphon Cellular Lipid Content and Unsaturated Fatty Acid Methyl Esters Via Sterol Desaturase Gene Overexpression.
    Gharaie Fathabad S; Arumanayagam AS; Tabatabai B; Chen H; Lu J; Sitther V
    Appl Biochem Biotechnol; 2019 Dec; 189(4):1127-1140. PubMed ID: 31168708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of Zero-Valent Iron Nanoparticles on
    Fathabad SG; Tabatabai B; Walker D; Chen H; Lu J; Aslan K; Uddin J; Ghann W; Sitther V
    ACS Omega; 2020 Jun; 5(21):12166-12173. PubMed ID: 32548398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression of hlyB and mdh genes confers halotolerance in Fremyella diplosiphon, a freshwater cyanobacterium.
    Tabatabai B; Arumanayagam AS; Enitan O; Mani A; Natarajan SS; Sitther V
    Enzyme Microb Technol; 2017 Aug; 103():12-17. PubMed ID: 28554380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Ascorbic Acid on Zero-Valent Iron Nanoparticle and UV-B Mediated Stress in the Cyanobacterium,
    Wyatt L; Gichuki S; Yalcin YS; Sitther V
    Microorganisms; 2023 May; 11(5):. PubMed ID: 37317219
    [No Abstract]   [Full Text] [Related]  

  • 7. Lipid production and cellular changes in Fremyella diplosiphon exposed to nanoscale zerovalent iron nanoparticles and ampicillin.
    Yalcin YS; Aydin B; Chen H; Gichuki S; Sitther V
    Microb Cell Fact; 2023 Jun; 22(1):108. PubMed ID: 37280676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oil industry waste: a potential feedstock for biodiesel production.
    Abbas J; Hussain S; Iqbal MJ; Nadeem H; Qasim M; Hina S; Hafeez F
    Environ Technol; 2016 Aug; 37(16):2082-7. PubMed ID: 26776601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocrude Production Using a Novel Cyanobacterium: Pilot-Scale Cultivation and Lipid Extraction via Hydrothermal Liquefaction.
    Gichuki S; Tabatabai B; Sitther V
    Sustainability; 2023 Mar; 15(6):. PubMed ID: 37182195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mixed microalgae consortia growth under higher concentration of CO
    Aslam A; Thomas-Hall SR; Manzoor M; Jabeen F; Iqbal M; Uz Zaman Q; Schenk PM; Asif Tahir M
    J Photochem Photobiol B; 2018 Feb; 179():126-133. PubMed ID: 29367147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conversion of Microbial Lipids to Biodiesel and Basic Lab Tests for Analysis of Fuel-Quality Parameters.
    Franz AK; Yothers C
    Methods Mol Biol; 2019; 1995():285-310. PubMed ID: 31148135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct salt-dependent effects impair Fremyella diplosiphon pigmentation and cellular shape.
    Singh SP; Montgomery BL
    Plant Signal Behav; 2013 Jul; 8(7):e24713. PubMed ID: 23656879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodiesel from wet microalgae: extraction with hexane after the microwave-assisted transesterification of lipids.
    Cheng J; Huang R; Li T; Zhou J; Cen K
    Bioresour Technol; 2014 Oct; 170():69-75. PubMed ID: 25125194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Augmentation of the Photoreactivation Gene in
    Gichuki SM; Arumanayagam AS; Tabatabai B; Yalcin YS; Wyatt L; Sitther V
    ACS Omega; 2022 Oct; 7(39):35092-35101. PubMed ID: 36211070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipids of Rhodotorula mucilaginosa IIPL32 with biodiesel potential: Oil yield, fatty acid profile, fuel properties.
    Khot M; Ghosh D
    J Basic Microbiol; 2017 Apr; 57(4):345-352. PubMed ID: 28155998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An efficient and scalable extraction and quantification method for algal derived biofuel.
    Lohman EJ; Gardner RD; Halverson L; Macur RE; Peyton BM; Gerlach R
    J Microbiol Methods; 2013 Sep; 94(3):235-44. PubMed ID: 23810969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-situ transesterification of wet spent coffee grounds for sustainable biodiesel production.
    Park J; Kim B; Lee JW
    Bioresour Technol; 2016 Dec; 221():55-60. PubMed ID: 27639224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of ethyl esters and d3-methyl esters as internal standards for the gas chromatographic quantification of transesterified fatty acid methyl esters in food.
    Thurnhofer S; Vetter W
    J Agric Food Chem; 2006 May; 54(9):3209-14. PubMed ID: 16637674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative analysis of biodiesel produced by acidic transesterification of lipid extracted from oleaginous yeast
    Singh G; Jeyaseelan C; Bandyopadhyay KK; Paul D
    3 Biotech; 2018 Oct; 8(10):434. PubMed ID: 30306003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodiesel Production from Citrillus colocynthis Oil Using Enzymatic Based Catalytic Reaction and Characterization Studies.
    Nehdi IA; Sbihi HM; Blidi LE; Rashid U; Tan CP; Al-Resayes SI
    Protein Pept Lett; 2018; 25(2):164-170. PubMed ID: 28240158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.