These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 30417104)

  • 41. Targeted Myocardial Hypoxia Imaging Using a Nitroreductase-Activatable Near-Infrared Fluorescent Nanoprobe.
    Fan Y; Lu M; Yu XA; He M; Zhang Y; Ma XN; Kou J; Yu BY; Tian J
    Anal Chem; 2019 May; 91(10):6585-6592. PubMed ID: 30994329
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ultrasensitive near-infrared fluorescence-enhanced probe for in vivo nitroreductase imaging.
    Li Y; Sun Y; Li J; Su Q; Yuan W; Dai Y; Han C; Wang Q; Feng W; Li F
    J Am Chem Soc; 2015 May; 137(19):6407-16. PubMed ID: 25923361
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Improving colorimetric assays through protein enzyme-assisted gold nanoparticle amplification.
    Xie X; Xu W; Liu X
    Acc Chem Res; 2012 Sep; 45(9):1511-20. PubMed ID: 22786666
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Application of organic fluorescent probe-assisted near infrared fluorescence imaging in cervical cancer diagnosis].
    Zhu L; Zhang L; Zhou M; Alifu N
    Sheng Wu Gong Cheng Xue Bao; 2021 Aug; 37(8):2678-2687. PubMed ID: 34472288
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bioreductive fluorescent imaging agents: applications to tumour hypoxia.
    Elmes RB
    Chem Commun (Camb); 2016 Jul; 52(58):8935-56. PubMed ID: 26924320
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Near-infrared fluorescent probes in cancer imaging and therapy: an emerging field.
    Yi X; Wang F; Qin W; Yang X; Yuan J
    Int J Nanomedicine; 2014; 9():1347-65. PubMed ID: 24648733
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A NIR fluorescent smart probe for imaging tumor hypoxia.
    Hettie KS; Klockow JL; Moon EJ; Giaccia AJ; Chin FT
    Cancer Rep (Hoboken); 2021 Oct; 4(5):e1384. PubMed ID: 33811473
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Imaging of oxygen and hypoxia in cell and tissue samples.
    Papkovsky DB; Dmitriev RI
    Cell Mol Life Sci; 2018 Aug; 75(16):2963-2980. PubMed ID: 29761206
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Applications of azo-based probes for imaging retinal hypoxia.
    Uddin MI; Evans SM; Craft JR; Marnett LJ; Uddin MJ; Jayagopal A
    ACS Med Chem Lett; 2015 Apr; 6(4):445-9. PubMed ID: 25893047
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hypoxia-sensitive fluorescent probes for in vivo real-time fluorescence imaging of acute ischemia.
    Kiyose K; Hanaoka K; Oushiki D; Nakamura T; Kajimura M; Suematsu M; Nishimatsu H; Yamane T; Terai T; Hirata Y; Nagano T
    J Am Chem Soc; 2010 Nov; 132(45):15846-8. PubMed ID: 20979363
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Probe for the Detection of Hypoxic Cancer Cells.
    Luo S; Zou R; Wu J; Landry MP
    ACS Sens; 2017 Aug; 2(8):1139-1145. PubMed ID: 28741347
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The chemistry and radiochemistry of hypoxia-specific, radiohalogenated nitroaromatic imaging probes.
    Kumar P; Bacchu V; Wiebe LI
    Semin Nucl Med; 2015 Mar; 45(2):122-35. PubMed ID: 25704385
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Azo-Based Hypoxia-Responsive Self-Assembly Near-Infrared Fluorescent Nanoprobe for In Vivo Real-Time Bioimaging of Tumors.
    Liu W; Yao X; Zhu W; Wang J; Zhou F; Qian X; Tiemuer A; Yang S; Wang HY; Liu Y
    ACS Appl Bio Mater; 2021 Mar; 4(3):2752-2758. PubMed ID: 35014314
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Generalizable synthesis of bioresponsive near-infrared fluorescent probes: sulfonated heptamethine cyanine prototype for imaging cell hypoxia.
    Atkinson KM; Morsby JJ; Kommidi SSR; Smith BD
    Org Biomol Chem; 2021 May; 19(18):4100-4106. PubMed ID: 33978049
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Redox-Responsive Fluorescent Probes with Different Design Strategies.
    Lou Z; Li P; Han K
    Acc Chem Res; 2015 May; 48(5):1358-68. PubMed ID: 25901910
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tailoring the properties of a hypoxia-responsive 1,8-naphthalimide for imaging applications.
    Yang K; Leslie KG; Kim SY; Kalionis B; Chrzanowski W; Jolliffe KA; New EJ
    Org Biomol Chem; 2018 Jan; 16(4):619-624. PubMed ID: 29302671
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ratiometric Nanoparticle Probe Based on FRET-Amplified Phosphorescence for Oxygen Sensing with Minimal Phototoxicity.
    Ashokkumar P; Adarsh N; Klymchenko AS
    Small; 2020 Aug; 16(32):e2002494. PubMed ID: 32583632
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 2-Nitroimidazole-tricarbocyanine conjugate as a near-infrared fluorescent probe for in vivo imaging of tumor hypoxia.
    Okuda K; Okabe Y; Kadonosono T; Ueno T; Youssif BG; Kizaka-Kondoh S; Nagasawa H
    Bioconjug Chem; 2012 Mar; 23(3):324-9. PubMed ID: 22335430
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Strategies for Tumor Hypoxia Imaging Based on Aggregation-Induced Emission Fluorogens.
    Xue T; Shen J; Shao K; Wang W; Wu B; He Y
    Chemistry; 2020 Feb; 26(12):2521-2528. PubMed ID: 31692097
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.