These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 30417194)
21. A RecET-assisted CRISPR-Cas9 genome editing in Corynebacterium glutamicum. Wang B; Hu Q; Zhang Y; Shi R; Chai X; Liu Z; Shang X; Zhang Y; Wen T Microb Cell Fact; 2018 Apr; 17(1):63. PubMed ID: 29685154 [TBL] [Abstract][Full Text] [Related]
22. Harnessing the native type I-B CRISPR-Cas for genome editing in a polyploid archaeon. Cheng F; Gong L; Zhao D; Yang H; Zhou J; Li M; Xiang H J Genet Genomics; 2017 Nov; 44(11):541-548. PubMed ID: 29169919 [TBL] [Abstract][Full Text] [Related]
23. The Impact of Chromatin Dynamics on Cas9-Mediated Genome Editing in Human Cells. Daer RM; Cutts JP; Brafman DA; Haynes KA ACS Synth Biol; 2017 Mar; 6(3):428-438. PubMed ID: 27783893 [TBL] [Abstract][Full Text] [Related]
24. Design and Validation of CRISPR/Cas9 Systems for Targeted Gene Modification in Induced Pluripotent Stem Cells. Lee CM; Zhu H; Davis TH; Deshmukh H; Bao G Methods Mol Biol; 2017; 1498():3-21. PubMed ID: 27709565 [TBL] [Abstract][Full Text] [Related]
25. A two-plasmid inducible CRISPR/Cas9 genome editing tool for Clostridium acetobutylicum. Wasels F; Jean-Marie J; Collas F; López-Contreras AM; Lopes Ferreira N J Microbiol Methods; 2017 Sep; 140():5-11. PubMed ID: 28610973 [TBL] [Abstract][Full Text] [Related]
26. Targeted genome editing in the rare actinomycete Actinoplanes sp. SE50/110 by using the CRISPR/Cas9 System. Wolf T; Gren T; Thieme E; Wibberg D; Zemke T; Pühler A; Kalinowski J J Biotechnol; 2016 Aug; 231():122-128. PubMed ID: 27262504 [TBL] [Abstract][Full Text] [Related]
27. p53 activation: a checkpoint for precision genome editing? Conti A; Di Micco R Genome Med; 2018 Aug; 10(1):66. PubMed ID: 30119695 [TBL] [Abstract][Full Text] [Related]
28. High efficient multisites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system. Wang P; Zhang J; Sun L; Ma Y; Xu J; Liang S; Deng J; Tan J; Zhang Q; Tu L; Daniell H; Jin S; Zhang X Plant Biotechnol J; 2018 Jan; 16(1):137-150. PubMed ID: 28499063 [TBL] [Abstract][Full Text] [Related]
29. MUC1 aptamer conjugated to chitosan nanoparticles, an efficient targeted carrier designed for anticancer SN38 delivery. Sayari E; Dinarvand M; Amini M; Azhdarzadeh M; Mollarazi E; Ghasemi Z; Atyabi F Int J Pharm; 2014 Oct; 473(1-2):304-15. PubMed ID: 24905777 [TBL] [Abstract][Full Text] [Related]
30. A dual-targeting DNA tetrahedron nanocarrier for breast cancer cell imaging and drug delivery. Liu X; Wu L; Wang L; Jiang W Talanta; 2018 Mar; 179():356-363. PubMed ID: 29310244 [TBL] [Abstract][Full Text] [Related]
31. CRISPR/Cas9: an advanced tool for editing plant genomes. Samanta MK; Dey A; Gayen S Transgenic Res; 2016 Oct; 25(5):561-73. PubMed ID: 27012546 [TBL] [Abstract][Full Text] [Related]
32. Aptamer decorated hyaluronan/chitosan nanoparticles for targeted delivery of 5-fluorouracil to MUC1 overexpressing adenocarcinomas. Ghasemi Z; Dinarvand R; Mottaghitalab F; Esfandyari-Manesh M; Sayari E; Atyabi F Carbohydr Polym; 2015 May; 121():190-8. PubMed ID: 25659689 [TBL] [Abstract][Full Text] [Related]
33. Specific targeting delivery to MUC1 overexpressing tumors by albumin-chitosan nanoparticles conjugated to DNA aptamer. Esfandyari-Manesh M; Mohammadi A; Atyabi F; Nabavi SM; Ebrahimi SM; Shahmoradi E; Varnamkhasti BS; Ghahremani MH; Dinarvand R Int J Pharm; 2016 Dec; 515(1-2):607-615. PubMed ID: 27989825 [TBL] [Abstract][Full Text] [Related]
34. Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium. Pyne ME; Bruder MR; Moo-Young M; Chung DA; Chou CP Sci Rep; 2016 May; 6():25666. PubMed ID: 27157668 [TBL] [Abstract][Full Text] [Related]
35. Identification of genomic sites for CRISPR/Cas9-based genome editing in the Vitis vinifera genome. Wang Y; Liu X; Ren C; Zhong GY; Yang L; Li S; Liang Z BMC Plant Biol; 2016 Apr; 16():96. PubMed ID: 27098585 [TBL] [Abstract][Full Text] [Related]
36. Selective collection and detection of MCF-7 breast cancer cells using aptamer-functionalized magnetic beads and quantum dots based nano-bio-probes. Hua X; Zhou Z; Yuan L; Liu S Anal Chim Acta; 2013 Jul; 788():135-40. PubMed ID: 23845492 [TBL] [Abstract][Full Text] [Related]
37. Efficient, footprint-free human iPSC genome editing by consolidation of Cas9/CRISPR and piggyBac technologies. Wang G; Yang L; Grishin D; Rios X; Ye LY; Hu Y; Li K; Zhang D; Church GM; Pu WT Nat Protoc; 2017 Jan; 12(1):88-103. PubMed ID: 27929521 [TBL] [Abstract][Full Text] [Related]
38. Characterizing Oligonucleotide Uptake in Cultured Cells: A Case Study Using AS1411 Aptamer. Reyes-Reyes EM; Bates PJ Methods Mol Biol; 2019; 2036():173-186. PubMed ID: 31410797 [TBL] [Abstract][Full Text] [Related]
39. Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice. Hu X; Meng X; Liu Q; Li J; Wang K Plant Biotechnol J; 2018 Jan; 16(1):292-297. PubMed ID: 28605576 [TBL] [Abstract][Full Text] [Related]
40. Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae. Katayama T; Tanaka Y; Okabe T; Nakamura H; Fujii W; Kitamoto K; Maruyama J Biotechnol Lett; 2016 Apr; 38(4):637-42. PubMed ID: 26687199 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]