BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 30417254)

  • 1. RNA sequencing-based transcriptomic profiles of embryonic lens development for cataract gene discovery.
    Anand D; Kakrana A; Siddam AD; Huang H; Saadi I; Lachke SA
    Hum Genet; 2018 Dec; 137(11-12):941-954. PubMed ID: 30417254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MS/MS in silico subtraction-based proteomic profiling as an approach to facilitate disease gene discovery: application to lens development and cataract.
    Aryal S; Anand D; Hernandez FG; Weatherbee BAT; Huang H; Reddy AP; Wilmarth PA; David LL; Lachke SA
    Hum Genet; 2020 Feb; 139(2):151-184. PubMed ID: 31797049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. iSyTE: integrated Systems Tool for Eye gene discovery.
    Lachke SA; Ho JW; Kryukov GV; O'Connell DJ; Aboukhalil A; Bulyk ML; Park PJ; Maas RL
    Invest Ophthalmol Vis Sci; 2012 Mar; 53(3):1617-27. PubMed ID: 22323457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular characterization of mouse lens epithelial cell lines and their suitability to study RNA granules and cataract associated genes.
    Terrell AM; Anand D; Smith SF; Dang CA; Waters SM; Pathania M; Beebe DC; Lachke SA
    Exp Eye Res; 2015 Feb; 131():42-55. PubMed ID: 25530357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. iSyTE 2.0: a database for expression-based gene discovery in the eye.
    Kakrana A; Yang A; Anand D; Djordjevic D; Ramachandruni D; Singh A; Huang H; Ho JWK; Lachke SA
    Nucleic Acids Res; 2018 Jan; 46(D1):D875-D885. PubMed ID: 29036527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systems biology of lens development: A paradigm for disease gene discovery in the eye.
    Anand D; Lachke SA
    Exp Eye Res; 2017 Mar; 156():22-33. PubMed ID: 26992779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic profiling of retina and retinal pigment epithelium combined embryonic tissue to facilitate ocular disease gene discovery.
    Aryal S; Anand D; Huang H; Reddy AP; Wilmarth PA; David LL; Lachke SA
    Hum Genet; 2023 Jul; 142(7):927-947. PubMed ID: 37191732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Throughput Transcriptomics of
    Siddam AD; Duot M; Coomson SY; Anand D; Aryal S; Weatherbee BAT; Audic Y; Paillard L; Lachke SA
    Cells; 2023 Apr; 12(7):. PubMed ID: 37048143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic profiling of retina and retinal pigment epithelium combined embryonic tissue to facilitate ocular disease gene discovery.
    Aryal S; Anand D; Huang H; Reddy AP; Wilmarth PA; David LL; Lachke SA
    Res Sq; 2023 Mar; ():. PubMed ID: 36993571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptome Profiling of Developing Murine Lens Through RNA Sequencing.
    Khan SY; Hackett SF; Lee MC; Pourmand N; Talbot CC; Riazuddin SA
    Invest Ophthalmol Vis Sci; 2015 Jul; 56(8):4919-26. PubMed ID: 26225632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative transcriptome analysis of epithelial and fiber cells in newborn mouse lenses with RNA sequencing.
    Hoang TV; Kumar PK; Sutharzan S; Tsonis PA; Liang C; Robinson ML
    Mol Vis; 2014; 20():1491-517. PubMed ID: 25489224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compound mouse mutants of bZIP transcription factors Mafg and Mafk reveal a regulatory network of non-crystallin genes associated with cataract.
    Agrawal SA; Anand D; Siddam AD; Kakrana A; Dash S; Scheiblin DA; Dang CA; Terrell AM; Waters SM; Singh A; Motohashi H; Yamamoto M; Lachke SA
    Hum Genet; 2015 Jul; 134(7):717-35. PubMed ID: 25896808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Congenital Cataract in Gpr161vl/vl Mice Is Modified by Proximal Chromosome 15.
    Li BI; Ababon MR; Matteson PG; Lin Y; Nanda V; Millonig JH
    PLoS One; 2017; 12(1):e0170724. PubMed ID: 28135291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Express: A database of transcriptome profiles encompassing known and novel transcripts across multiple development stages in eye tissues.
    Budak G; Dash S; Srivastava R; Lachke SA; Janga SC
    Exp Eye Res; 2018 Mar; 168():57-68. PubMed ID: 29337142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene expression profiling in embryonic mouse lenses.
    Xiao W; Liu W; Li Z; Liang D; Li L; White LD; Fox DA; Overbeek PA; Chen Q
    Mol Vis; 2006 Dec; 12():1692-8. PubMed ID: 17213798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular characterization of the human lens epithelium-derived cell line SRA01/04.
    Weatherbee BAT; Barton JR; Siddam AD; Anand D; Lachke SA
    Exp Eye Res; 2019 Nov; 188():107787. PubMed ID: 31479653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Tudor-domain protein TDRD7, mutated in congenital cataract, controls the heat shock protein HSPB1 (HSP27) and lens fiber cell morphology.
    Barnum CE; Al Saai S; Patel SD; Cheng C; Anand D; Xu X; Dash S; Siddam AD; Glazewski L; Paglione E; Polson SW; Chuma S; Mason RW; Wei S; Batish M; Fowler VM; Lachke SA
    Hum Mol Genet; 2020 Jul; 29(12):2076-2097. PubMed ID: 32420594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA-binding proteins and post-transcriptional regulation in lens biology and cataract: Mediating spatiotemporal expression of key factors that control the cell cycle, transcription, cytoskeleton and transparency.
    Lachke SA
    Exp Eye Res; 2022 Jan; 214():108889. PubMed ID: 34906599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptomics Analysis of Lens from Patients with Posterior Subcapsular Congenital Cataract.
    Lin X; Li H; Yang T; Liu X; Fan F; Zhou X; Luo Y
    Genes (Basel); 2021 Nov; 12(12):. PubMed ID: 34946854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cataract mutations and lens development.
    Graw J
    Prog Retin Eye Res; 1999 Mar; 18(2):235-67. PubMed ID: 9932285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.