These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 30417261)
1. The Mitochondrion: A Potential Therapeutic Target for Alzheimer's Disease. Lu MH; Zhao XY; Yao PP; Xu DE; Ma QH Neurosci Bull; 2018 Dec; 34(6):1127-1130. PubMed ID: 30417261 [No Abstract] [Full Text] [Related]
2. Synaptic Mitochondria: An Early Target of Amyloid-β and Tau in Alzheimer's Disease. Torres AK; Jara C; Park-Kang HS; Polanco CM; Tapia D; Alarcón F; de la Peña A; Llanquinao J; Vargas-Mardones G; Indo JA; Inestrosa NC; Tapia-Rojas C J Alzheimers Dis; 2021; 84(4):1391-1414. PubMed ID: 34719499 [TBL] [Abstract][Full Text] [Related]
3. Abnormal tau, mitochondrial dysfunction, impaired axonal transport of mitochondria, and synaptic deprivation in Alzheimer's disease. Reddy PH Brain Res; 2011 Sep; 1415():136-48. PubMed ID: 21872849 [TBL] [Abstract][Full Text] [Related]
4. [Mitochondrial dysfunction and neuronal apoptosis: new molecular approach to prevent Alzheimer's disease]. Takuma K; Kataoka S; Ago Y; Matsuda T Nihon Yakurigaku Zasshi; 2009 Oct; 134(4):180-3. PubMed ID: 19828920 [No Abstract] [Full Text] [Related]
5. Mitochondrial Regulatory Pathways in the Pathogenesis of Alzheimer's Disease. Adiele RC; Adiele CA J Alzheimers Dis; 2016 Jul; 53(4):1257-70. PubMed ID: 27392851 [TBL] [Abstract][Full Text] [Related]
6. Recent Advances from the Bench Toward the Bedside in Alzheimer's Disease. Macauley SL; Holtzman DM EBioMedicine; 2015 Feb; 2(2):94-5. PubMed ID: 26137544 [No Abstract] [Full Text] [Related]
7. Impaired transcription in Alzheimer's disease: key role in mitochondrial dysfunction and oxidative stress. Caldeira GL; Ferreira IL; Rego AC J Alzheimers Dis; 2013; 34(1):115-31. PubMed ID: 23364141 [TBL] [Abstract][Full Text] [Related]
8. Alzheimer's pathogenesis and its link to the mitochondrion. Simoncini C; Orsucci D; Caldarazzo Ienco E; Siciliano G; Bonuccelli U; Mancuso M Oxid Med Cell Longev; 2015; 2015():803942. PubMed ID: 25973139 [TBL] [Abstract][Full Text] [Related]
9. Physical Exercise and Brain Mitochondrial Fitness: The Possible Role Against Alzheimer's Disease. Bernardo TC; Marques-Aleixo I; Beleza J; Oliveira PJ; Ascensão A; Magalhães J Brain Pathol; 2016 Sep; 26(5):648-63. PubMed ID: 27328058 [TBL] [Abstract][Full Text] [Related]
10. March separate, strike together--role of phosphorylated TAU in mitochondrial dysfunction in Alzheimer's disease. Eckert A; Nisbet R; Grimm A; Götz J Biochim Biophys Acta; 2014 Aug; 1842(8):1258-66. PubMed ID: 24051203 [TBL] [Abstract][Full Text] [Related]
11. Alzheimer's disease pathologic cascades: who comes first, what drives what. Swerdlow RH Neurotox Res; 2012 Oct; 22(3):182-94. PubMed ID: 21913048 [TBL] [Abstract][Full Text] [Related]
12. Mitochondria: the common upstream driver of amyloid-β and tau pathology in Alzheimer's disease. Silva DF; Esteves AR; Oliveira CR; Cardoso SM Curr Alzheimer Res; 2011 Aug; 8(5):563-72. PubMed ID: 21244356 [TBL] [Abstract][Full Text] [Related]
13. Amyloid Beta and Phosphorylated Tau-Induced Defective Autophagy and Mitophagy in Alzheimer's Disease. Reddy PH; Oliver DM Cells; 2019 May; 8(5):. PubMed ID: 31121890 [TBL] [Abstract][Full Text] [Related]
14. Amyloid-β and tau--a toxic pas de deux in Alzheimer's disease. Ittner LM; Götz J Nat Rev Neurosci; 2011 Feb; 12(2):65-72. PubMed ID: 21193853 [TBL] [Abstract][Full Text] [Related]
15. The search for improved animal models of Alzheimer's disease and novel strategies for therapeutic intervention. Li C; Briner A; Götz J Future Med Chem; 2019 Aug; 11(15):1853-1857. PubMed ID: 31517531 [No Abstract] [Full Text] [Related]
16. Interaction between NH(2)-tau fragment and Aβ in Alzheimer's disease mitochondria contributes to the synaptic deterioration. Amadoro G; Corsetti V; Atlante A; Florenzano F; Capsoni S; Bussani R; Mercanti D; Calissano P Neurobiol Aging; 2012 Apr; 33(4):833.e1-25. PubMed ID: 21958963 [TBL] [Abstract][Full Text] [Related]
18. [Development of animal models for therapy of Alzheimer's disease]. Shoji M Nihon Ronen Igakkai Zasshi; 2003 Jan; 40(1):27-9. PubMed ID: 12649842 [No Abstract] [Full Text] [Related]
19. Mitophagy pathways and Alzheimer's disease: From pathogenesis to treatment. Pan XJ; Misrani A; Tabassum S; Yang L Mitochondrion; 2021 Jul; 59():37-47. PubMed ID: 33872797 [TBL] [Abstract][Full Text] [Related]
20. In vivo Patterns of Tau Pathology, Amyloid-β Burden, and Neuronal Dysfunction in Clinical Variants of Alzheimer's Disease. Dronse J; Fliessbach K; Bischof GN; von Reutern B; Faber J; Hammes J; Kuhnert G; Neumaier B; Onur OA; Kukolja J; van Eimeren T; Jessen F; Fink GR; Klockgether T; Drzezga A J Alzheimers Dis; 2017; 55(2):465-471. PubMed ID: 27802224 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]