These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 30417446)

  • 1. Candidate gene identification of existing or induced mutations with pipelines applicable to large genomes.
    Dong J; Tu M; Feng Y; Zdepski A; Ge F; Kumar D; Slovin JP; Messing J
    Plant J; 2019 Feb; 97(4):673-682. PubMed ID: 30417446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping Maize Mutants Using Bulked-Segregant Analysis and Next-Generation Sequencing.
    Best NB; McSteen P
    Curr Protoc; 2022 Nov; 2(11):e591. PubMed ID: 36350247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bulked-Segregant Analysis Coupled to Whole Genome Sequencing (BSA-Seq) for Rapid Gene Cloning in Maize.
    Klein H; Xiao Y; Conklin PA; Govindarajulu R; Kelly JA; Scanlon MJ; Whipple CJ; Bartlett M
    G3 (Bethesda); 2018 Nov; 8(11):3583-3592. PubMed ID: 30194092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted Sequencing Reveals Large-Scale Sequence Polymorphism in Maize Candidate Genes for Biomass Production and Composition.
    Muraya MM; Schmutzer T; Ulpinnis C; Scholz U; Altmann T
    PLoS One; 2015; 10(7):e0132120. PubMed ID: 26151830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deletion Mutagenesis and Identification of Causative Mutations in Maize.
    Jia S; Li A; Zhang C; Holding D
    Methods Mol Biol; 2018; 1676():97-108. PubMed ID: 28986905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a genomic region controlling thermotolerance at flowering in maize using a combination of whole genomic re-sequencing and bulked segregant analysis.
    Zeng W; Shi J; Qiu C; Wang Y; Rehman S; Yu S; Huang S; He C; Wang W; Chen H; Chen C; Wang C; Tao Z; Li P
    Theor Appl Genet; 2020 Oct; 133(10):2797-2810. PubMed ID: 32535640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Exome-seq Based Tool for Mapping and Selection of Candidate Genes in Maize Deletion Mutants.
    Jia S; Morton K; Zhang C; Holding D
    Genomics Proteomics Bioinformatics; 2018 Dec; 16(6):439-450. PubMed ID: 30743052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Population of Deletion Mutants and an Integrated Mapping and Exome-seq Pipeline for Gene Discovery in Maize.
    Jia S; Li A; Morton K; Avoles-Kianian P; Kianian SF; Zhang C; Holding D
    G3 (Bethesda); 2016 Aug; 6(8):2385-95. PubMed ID: 27261000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid fine mapping of causative mutations from sets of unordered, contig-sized fragments of genome sequence.
    Rallapalli G; Corredor-Moreno P; Chalstrey E; Page M; MacLean D
    BMC Bioinformatics; 2019 Jan; 20(1):9. PubMed ID: 30616525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining next-generation sequencing and progeny testing for rapid identification of induced recessive and dominant mutations in maize M
    Heuermann MC; Rosso MG; Mascher M; Brandt R; Tschiersch H; Altschmied L; Altmann T
    Plant J; 2019 Nov; 100(4):851-862. PubMed ID: 31169333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene-Indexed Mutations in Maize.
    Lu X; Liu J; Ren W; Yang Q; Chai Z; Chen R; Wang L; Zhao J; Lang Z; Wang H; Fan Y; Zhao J; Zhang C
    Mol Plant; 2018 Mar; 11(3):496-504. PubMed ID: 29223623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide analysis of the pentatricopeptide repeat gene family in different maize genomes and its important role in kernel development.
    Chen L; Li YX; Li C; Shi Y; Song Y; Zhang D; Li Y; Wang T
    BMC Plant Biol; 2018 Dec; 18(1):366. PubMed ID: 30567489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of EMS-induced causal mutations in a non-reference Arabidopsis thaliana accession by whole genome sequencing.
    Uchida N; Sakamoto T; Kurata T; Tasaka M
    Plant Cell Physiol; 2011 Apr; 52(4):716-22. PubMed ID: 21398646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-plant GWAS coupled with bulk segregant analysis allows rapid identification and corroboration of plant-height candidate SNPs.
    Gyawali A; Shrestha V; Guill KE; Flint-Garcia S; Beissinger TM
    BMC Plant Biol; 2019 Oct; 19(1):412. PubMed ID: 31590656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic analysis of 63 mutations affecting maize kernel development isolated from Mutator stocks.
    Scanlon MJ; Stinard PS; James MG; Myers AM; Robertson DS
    Genetics; 1994 Jan; 136(1):281-94. PubMed ID: 8138165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of genome-wide insertion and deletion markers for maize, based on next-generation sequencing data.
    Liu J; Qu J; Yang C; Tang D; Li J; Lan H; Rong T
    BMC Genomics; 2015 Aug; 16(1):601. PubMed ID: 26269146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of EMS-induced causal mutations in Arabidopsis thaliana by next-generation sequencing.
    Uchida N; Sakamoto T; Tasaka M; Kurata T
    Methods Mol Biol; 2014; 1062():259-70. PubMed ID: 24057371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying genetic variants underlying phenotypic variation in plants without complete genomes.
    Voichek Y; Weigel D
    Nat Genet; 2020 May; 52(5):534-540. PubMed ID: 32284578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Next-generation forward genetic screens: using simulated data to improve the design of mapping-by-sequencing experiments in Arabidopsis.
    Wilson-Sánchez D; Lup SD; Sarmiento-Mañús R; Ponce MR; Micol JL
    Nucleic Acids Res; 2019 Dec; 47(21):e140. PubMed ID: 31544937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The maize genome as a model for efficient sequence analysis of large plant genomes.
    Rabinowicz PD; Bennetzen JL
    Curr Opin Plant Biol; 2006 Apr; 9(2):149-56. PubMed ID: 16459129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.