These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 30417446)

  • 41. A large-scale screen for artificial selection in maize identifies candidate agronomic loci for domestication and crop improvement.
    Yamasaki M; Tenaillon MI; Bi IV; Schroeder SG; Sanchez-Villeda H; Doebley JF; Gaut BS; McMullen MD
    Plant Cell; 2005 Nov; 17(11):2859-72. PubMed ID: 16227451
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High-Throughput Resequencing of Maize Landraces at Genomic Regions Associated with Flowering Time.
    Jamann TM; Sood S; Wisser RJ; Holland JB
    PLoS One; 2017; 12(1):e0168910. PubMed ID: 28045987
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Genetic dissection of maize plant architecture with an ultra-high density bin map based on recombinant inbred lines.
    Zhou Z; Zhang C; Zhou Y; Hao Z; Wang Z; Zeng X; Di H; Li M; Zhang D; Yong H; Zhang S; Weng J; Li X
    BMC Genomics; 2016 Mar; 17():178. PubMed ID: 26940065
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Genomic screening for artificial selection during domestication and improvement in maize.
    Yamasaki M; Wright SI; McMullen MD
    Ann Bot; 2007 Nov; 100(5):967-73. PubMed ID: 17704539
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Perspectives for identification of mutations in the zebrafish: making use of next-generation sequencing technologies for forward genetic approaches.
    Henke K; Bowen ME; Harris MP
    Methods; 2013 Aug; 62(3):185-96. PubMed ID: 23748111
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Targeted analysis of orthologous phytochrome A regions of the sorghum, maize, and rice genomes using comparative gene-island sequencing.
    Morishige DT; Childs KL; Moore LD; Mullet JE
    Plant Physiol; 2002 Dec; 130(4):1614-25. PubMed ID: 12481045
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mapping and Cloning of Chemical Induced Mutations by Whole-Genome Sequencing of Bulked Segregants.
    Hua J; Wang S; Sun Q
    Methods Mol Biol; 2017; 1578():285-289. PubMed ID: 28220434
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genome-wide histone acetylation correlates with active transcription in maize.
    Zhang W; Garcia N; Feng Y; Zhao H; Messing J
    Genomics; 2015 Oct; 106(4):214-20. PubMed ID: 26021446
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Unlocking the secondary gene-pool of barley with next-generation sequencing.
    Wendler N; Mascher M; Nöh C; Himmelbach A; Scholz U; Ruge-Wehling B; Stein N
    Plant Biotechnol J; 2014 Oct; 12(8):1122-31. PubMed ID: 25040223
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [A strategy based on comparative genomics to align ESTs of maize].
    Zhang ZX; Zhang SP; Zheng YL
    Yi Chuan; 2006 Mar; 28(3):339-44. PubMed ID: 16551603
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Small kernel 1 encodes a pentatricopeptide repeat protein required for mitochondrial nad7 transcript editing and seed development in maize (Zea mays) and rice (Oryza sativa).
    Li XJ; Zhang YF; Hou M; Sun F; Shen Y; Xiu ZH; Wang X; Chen ZL; Sun SS; Small I; Tan BC
    Plant J; 2014 Sep; 79(5):797-809. PubMed ID: 24923534
    [TBL] [Abstract][Full Text] [Related]  

  • 52. mirTrios: an integrated pipeline for detection of de novo and rare inherited mutations from trios-based next-generation sequencing.
    Li J; Jiang Y; Wang T; Chen H; Xie Q; Shao Q; Ran X; Xia K; Sun ZS; Wu J
    J Med Genet; 2015 Apr; 52(4):275-81. PubMed ID: 25596308
    [TBL] [Abstract][Full Text] [Related]  

  • 53. BSAseq: an interactive and integrated web-based workflow for identification of causal mutations in bulked F2 populations.
    Wang L; Lu Z; Regulski M; Jiao Y; Chen J; Ware D; Xin Z
    Bioinformatics; 2021 Apr; 37(3):382-387. PubMed ID: 32777814
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Detection of DNA Methylation by Whole-Genome Bisulfite Sequencing.
    Li Q; Hermanson PJ; Springer NM
    Methods Mol Biol; 2018; 1676():185-196. PubMed ID: 28986911
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Fosmid Pool-Based Next Generation Sequencing Approach to Haplotype-Resolve Whole Genomes.
    Suk EK; Schulz S; Mentrup B; Huebsch T; Duitama J; Hoehe MR
    Methods Mol Biol; 2017; 1551():223-269. PubMed ID: 28138850
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Scanning the effects of ethyl methanesulfonate on the whole genome of Lotus japonicus using second-generation sequencing analysis.
    Mohd-Yusoff NF; Ruperao P; Tomoyoshi NE; Edwards D; Gresshoff PM; Biswas B; Batley J
    G3 (Bethesda); 2015 Feb; 5(4):559-67. PubMed ID: 25660167
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Whole-genome analysis of herbicide-tolerant mutant rice generated by Agrobacterium-mediated gene targeting.
    Endo M; Kumagai M; Motoyama R; Sasaki-Yamagata H; Mori-Hosokawa S; Hamada M; Kanamori H; Nagamura Y; Katayose Y; Itoh T; Toki S
    Plant Cell Physiol; 2015 Jan; 56(1):116-25. PubMed ID: 25378689
    [TBL] [Abstract][Full Text] [Related]  

  • 58. SNP discovery by transcriptome pyrosequencing.
    Barbazuk WB; Schnable PS
    Methods Mol Biol; 2011; 729():225-46. PubMed ID: 21365494
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mapping maize genes: a series of research-based laboratory exercises.
    Makarevitch I; Kralich E
    Biochem Mol Biol Educ; 2011; 39(5):375-83. PubMed ID: 21948509
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Deep sequencing of Danish Holstein dairy cattle for variant detection and insight into potential loss-of-function variants in protein coding genes.
    Das A; Panitz F; Gregersen VR; Bendixen C; Holm LE
    BMC Genomics; 2015 Dec; 16():1043. PubMed ID: 26645365
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.