These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 30417474)

  • 1. Sequentially Controlled Deformations of Patterned Hydrogels into 3D Configurations with Multilevel Structures.
    Ma P; Niu B; Lin J; Kang T; Qian J; Wu ZL; Zheng Q
    Macromol Rapid Commun; 2019 Feb; 40(3):e1800681. PubMed ID: 30417474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-Specific Pre-Swelling-Directed Morphing Structures of Patterned Hydrogels.
    Wang ZJ; Hong W; Wu ZL; Zheng Q
    Angew Chem Int Ed Engl; 2017 Dec; 56(50):15974-15978. PubMed ID: 29105231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photolithographically Patterned Hydrogels with Programmed Deformations.
    Li CY; Hao XP; Wu ZL; Zheng Q
    Chem Asian J; 2019 Jan; 14(1):94-104. PubMed ID: 30239161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cooperative deformations of periodically patterned hydrogels.
    Wang ZJ; Zhu CN; Hong W; Wu ZL; Zheng Q
    Sci Adv; 2017 Sep; 3(9):e1700348. PubMed ID: 28929134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shape-Morphing Materials from Stimuli-Responsive Hydrogel Hybrids.
    Jeon SJ; Hauser AW; Hayward RC
    Acc Chem Res; 2017 Feb; 50(2):161-169. PubMed ID: 28181798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kirigami-Design-Enabled Hydrogel Multimorphs with Application as a Multistate Switch.
    Hao XP; Xu Z; Li CY; Hong W; Zheng Q; Wu ZL
    Adv Mater; 2020 Jun; 32(22):e2000781. PubMed ID: 32319155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstructable Gradient Structures and Reprogrammable 3D Deformations of Hydrogels with Coumarin Units as the Photolabile Crosslinks.
    Zhu CN; Li CY; Wang H; Hong W; Huang F; Zheng Q; Wu ZL
    Adv Mater; 2021 May; 33(18):e2008057. PubMed ID: 33788313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermo- and photo-responsive composite hydrogels with programmed deformations.
    Wang ZJ; Li CY; Zhao XY; Wu ZL; Zheng Q
    J Mater Chem B; 2019 Mar; 7(10):1674-1678. PubMed ID: 32254908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioinspired 3D structures with programmable morphologies and motions.
    Nojoomi A; Arslan H; Lee K; Yum K
    Nat Commun; 2018 Sep; 9(1):3705. PubMed ID: 30209312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Programmed planar-to-helical shape transformations of composite hydrogels with bioinspired layered fibrous structures.
    Wang ZJ; Zhu CN; Hong W; Wu ZL; Zheng Q
    J Mater Chem B; 2016 Nov; 4(44):7075-7079. PubMed ID: 32263643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled morphology of thin film silicon integrated with environmentally responsive hydrogels.
    Chatterjee P; Pan Y; Stevens EC; Ma T; Jiang H; Dai LL
    Langmuir; 2013 May; 29(21):6495-501. PubMed ID: 23617458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the multiphasic model and the transport model for the swelling and deformation of polyelectrolyte hydrogels.
    Feng L; Jia Y; Li X; An L
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1328-35. PubMed ID: 21783142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micro 3D printing using a digital projector and its application in the study of soft materials mechanics.
    Lee H; Fang NX
    J Vis Exp; 2012 Nov; (69):e4457. PubMed ID: 23222659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogel Adhesion by Wrinkling Films.
    Kato M; Asoh TA; Uyama H
    Macromol Rapid Commun; 2019 Dec; 40(23):e1900434. PubMed ID: 31631434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Programmable and Reversible 3D-/4D-Shape-Morphing Hydrogels with Precisely Defined Ion Coordination.
    Xu Z; Fu J
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):26476-26484. PubMed ID: 32421300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differentiation of cardiosphere-derived cells into a mature cardiac lineage using biodegradable poly(N-isopropylacrylamide) hydrogels.
    Li Z; Guo X; Matsushita S; Guan J
    Biomaterials; 2011 Apr; 32(12):3220-32. PubMed ID: 21296413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Softening and Shape Morphing of Stiff Tough Hydrogels by Localized Unlocking of the Trivalent Ionically Cross-Linked Centers.
    Wang J; Li T; Chen F; Zhou D; Li B; Zhou X; Gan T; Handschuh-Wang S; Zhou X
    Macromol Rapid Commun; 2018 Jun; 39(12):e1800143. PubMed ID: 29749078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microcontact printing of polydopamine on thermally expandable hydrogels for controlled cell adhesion and delivery of geometrically defined microtissues.
    Lee YB; Kim SJ; Kim EM; Byun H; Chang HK; Park J; Choi YS; Shin H
    Acta Biomater; 2017 Oct; 61():75-87. PubMed ID: 28760620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering shape memory and morphing protein hydrogels based on protein unfolding and folding.
    Bian Q; Fu L; Li H
    Nat Commun; 2022 Jan; 13(1):137. PubMed ID: 35013234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water-Responsive Shape Recovery Induced Buckling in Biodegradable Photo-Cross-Linked Poly(ethylene glycol) (PEG) Hydrogel.
    Salvekar AV; Huang WM; Xiao R; Wong YS; Venkatraman SS; Tay KH; Shen ZX
    Acc Chem Res; 2017 Feb; 50(2):141-150. PubMed ID: 28181795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.