BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 30417488)

  • 1. Mitochondrial dysfunction in diabetes and the regulatory roles of antidiabetic agents on the mitochondrial function.
    Yaribeygi H; Atkin SL; Sahebkar A
    J Cell Physiol; 2019 Jun; 234(6):8402-8410. PubMed ID: 30417488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protection of pancreatic beta-cells: is it feasible?
    Bonora E
    Nutr Metab Cardiovasc Dis; 2008 Jan; 18(1):74-83. PubMed ID: 18096375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autophagy and Mitochondria in Obesity and Type 2 Diabetes.
    Sarparanta J; García-Macia M; Singh R
    Curr Diabetes Rev; 2017; 13(4):352-369. PubMed ID: 26900135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced autophagy plays a cardinal role in mitochondrial dysfunction in type 2 diabetic Goto-Kakizaki (GK) rats: ameliorating effects of (-)-epigallocatechin-3-gallate.
    Yan J; Feng Z; Liu J; Shen W; Wang Y; Wertz K; Weber P; Long J; Liu J
    J Nutr Biochem; 2012 Jul; 23(7):716-24. PubMed ID: 21820301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Altered mitochondrial dynamics and response to insulin in cybrid cells harboring a diabetes-susceptible mitochondrial DNA haplogroup.
    Kuo HM; Weng SW; Chang AY; Huang HT; Lin HY; Chuang JH; Lin TK; Liou CW; Tai MH; Lin CY; Wang PW
    Free Radic Biol Med; 2016 Jul; 96():116-29. PubMed ID: 27107769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antidiabetic effect of total flavonoids from Sanguis draxonis in type 2 diabetic rats.
    Chen F; Xiong H; Wang J; Ding X; Shu G; Mei Z
    J Ethnopharmacol; 2013 Oct; 149(3):729-36. PubMed ID: 23933499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pancreatic β cells: Gatekeepers of type 2 diabetes.
    Park YJ; Woo M
    J Cell Biol; 2019 Apr; 218(4):1094-1095. PubMed ID: 30696700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of mitochondrial quality control by Sirtuins on the treatment of type 2 diabetes and diabetic kidney disease.
    Xu J; Kitada M; Koya D
    Biochim Biophys Acta Mol Basis Dis; 2020 Jun; 1866(6):165756. PubMed ID: 32147421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A traditional Chinese medicine JiuHuangLian (Rhizoma coptidis steamed with rice wine) reduces oxidative stress injury in type 2 diabetic rats.
    Li JC; Shen XF; Meng XL
    Food Chem Toxicol; 2013 Sep; 59():222-9. PubMed ID: 23791751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of inflammatory mechanisms in pathogenesis of type 2 diabetes mellitus.
    Akash MS; Rehman K; Chen S
    J Cell Biochem; 2013 Mar; 114(3):525-31. PubMed ID: 22991242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Melatonin as a Pleiotropic Molecule with Therapeutic Potential for Type 2 Diabetes and Cancer.
    Wojcik M; Krawczyk M; Wojcik P; Cypryk K; Wozniak LA
    Curr Med Chem; 2017 Nov; 24(35):3829-3850. PubMed ID: 28721827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of K(ATP) channels in β-cell resistance to oxidative stress.
    Drews G; Düfer M
    Diabetes Obes Metab; 2012 Oct; 14 Suppl 3():120-8. PubMed ID: 22928572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative stress and mitochondrial dysfunction in type 2 diabetes.
    Victor VM; Rocha M; Herance R; Hernandez-Mijares A
    Curr Pharm Des; 2011 Dec; 17(36):3947-58. PubMed ID: 22188447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel approaches to drug discovery for the treatment of type 2 diabetes.
    Xu X; Wang G; Zhou T; Chen L; Chen J; Shen X
    Expert Opin Drug Discov; 2014 Sep; 9(9):1047-58. PubMed ID: 25054271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MicroRNAs and type 2 diabetes mellitus: Molecular mechanisms and the effect of antidiabetic drug treatment.
    Yaribeygi H; Katsiki N; Behnam B; Iranpanah H; Sahebkar A
    Metabolism; 2018 Oct; 87():48-55. PubMed ID: 30253864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inflammatory stress in islet β-cells: therapeutic implications for type 2 diabetes?
    Lytrivi M; Igoillo-Esteve M; Cnop M
    Curr Opin Pharmacol; 2018 Dec; 43():40-45. PubMed ID: 30142486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular mechanisms by which aerobic exercise induces insulin sensitivity.
    Yaribeygi H; Atkin SL; Simental-Mendía LE; Sahebkar A
    J Cell Physiol; 2019 Aug; 234(8):12385-12392. PubMed ID: 30605232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loss of TFB1M results in mitochondrial dysfunction that leads to impaired insulin secretion and diabetes.
    Sharoyko VV; Abels M; Sun J; Nicholas LM; Mollet IG; Stamenkovic JA; Göhring I; Malmgren S; Storm P; Fadista J; Spégel P; Metodiev MD; Larsson NG; Eliasson L; Wierup N; Mulder H
    Hum Mol Genet; 2014 Nov; 23(21):5733-49. PubMed ID: 24916378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pharmacological induction of mitochondrial biogenesis as a therapeutic strategy for the treatment of type 2 diabetes.
    Zamora M; Pardo R; Villena JA
    Biochem Pharmacol; 2015 Nov; 98(1):16-28. PubMed ID: 26212547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting mitochondrial ion channels in Type 2 diabetes.
    Wiederkehr A; Santo-Domingo J
    Future Med Chem; 2020 Sep; 12(17):1525-1527. PubMed ID: 32698623
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.