These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 30417629)

  • 1. [Research progress of graphene and its derivatives in repair of peripheral nerve defect].
    Yao R; Wang B; Wang G
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Nov; 32(11):1483-1487. PubMed ID: 30417629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Research progress in graphene derivatives promoting bone regeneration].
    Liu CY; Fu L; Wang HC; Wang N; Zhang YD; Zhou YM
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2019 Sep; 54(9):642-645. PubMed ID: 31550790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro and in vivo studies of electroactive reduced graphene oxide-modified nanofiber scaffolds for peripheral nerve regeneration.
    Wang J; Cheng Y; Chen L; Zhu T; Ye K; Jia C; Wang H; Zhu M; Fan C; Mo X
    Acta Biomater; 2019 Jan; 84():98-113. PubMed ID: 30471474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Progress of peripheral nerve defect treatment with tissue engineering].
    Yang Y; Bo Z
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2010 Nov; 24(11):1310-4. PubMed ID: 21226351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation, Properties, and Application of Graphene-Based Materials in Tissue Engineering Scaffolds.
    Xue W; Du J; Li Q; Wang Y; Lu Y; Fan J; Yu S; Yang Y
    Tissue Eng Part B Rev; 2022 Oct; 28(5):1121-1136. PubMed ID: 34751592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D-Printed PCL/rGO Conductive Scaffolds for Peripheral Nerve Injury Repair.
    Vijayavenkataraman S; Thaharah S; Zhang S; Lu WF; Fuh JYH
    Artif Organs; 2019 May; 43(5):515-523. PubMed ID: 30229979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Recent advances in application of graphene oxide for bone tissue engineering].
    Chen L; Duan X; Xiang Z
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 May; 32(5):625-629. PubMed ID: 29806354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integrated multi-layer 3D-fabrication of PDA/RGD coated graphene loaded PCL nanoscaffold for peripheral nerve restoration.
    Qian Y; Zhao X; Han Q; Chen W; Li H; Yuan W
    Nat Commun; 2018 Jan; 9(1):323. PubMed ID: 29358641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applications of Graphene and Its Derivatives in Bone Repair: Advantages for Promoting Bone Formation and Providing Real-Time Detection, Challenges and Future Prospects.
    Du Z; Wang C; Zhang R; Wang X; Li X
    Int J Nanomedicine; 2020; 15():7523-7551. PubMed ID: 33116486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and characterization of conductive chitosan/gelatin-based scaffolds for nerve tissue engineering.
    Baniasadi H; Ramazani S A A; Mashayekhan S
    Int J Biol Macromol; 2015 Mar; 74():360-6. PubMed ID: 25553968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A three-dimensional nerve guide conduit based on graphene foam/polycaprolactone.
    Bahremandi Tolou N; Salimijazi H; Kharaziha M; Faggio G; Chierchia R; Lisi N
    Mater Sci Eng C Mater Biol Appl; 2021 Jul; 126():112110. PubMed ID: 34082932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accelerating bioelectric functional development of neural stem cells by graphene coupling: Implications for neural interfacing with conductive materials.
    Guo R; Zhang S; Xiao M; Qian F; He Z; Li D; Zhang X; Li H; Yang X; Wang M; Chai R; Tang M
    Biomaterials; 2016 Nov; 106():193-204. PubMed ID: 27566868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene-based 3D scaffolds in tissue engineering: fabrication, applications, and future scope in liver tissue engineering.
    Geetha Bai R; Muthoosamy K; Manickam S; Hilal-Alnaqbi A
    Int J Nanomedicine; 2019; 14():5753-5783. PubMed ID: 31413573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene based scaffolds on bone tissue engineering.
    Shadjou N; Hasanzadeh M; Khalilzadeh B
    Bioengineered; 2018 Jan; 9(1):38-47. PubMed ID: 29095664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of a Highly Conductive Silk Knitted Composite Scaffold by Two-Step Electrostatic Self-Assembly for Potential Peripheral Nerve Regeneration.
    Meng C; Jiang W; Huang Z; Liu T; Feng J
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):12317-12327. PubMed ID: 32115937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Research Progress of Graphene and Derivatives Nanocomposite in Orthopedics Application].
    Zhao W; Zhang S; Yang Q; Jiang D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Jun; 33(3):604-8. PubMed ID: 29709167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic Printing of Three-Dimensional Graphene Electroactive Microfibrous Scaffolds.
    Qing H; Ji Y; Li W; Zhao G; Yang Q; Zhang X; Luo Z; Lu TJ; Jin G; Xu F
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2049-2058. PubMed ID: 31799832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene nanomaterials as biocompatible and conductive scaffolds for stem cells: impact for tissue engineering and regenerative medicine.
    Menaa F; Abdelghani A; Menaa B
    J Tissue Eng Regen Med; 2015 Dec; 9(12):1321-38. PubMed ID: 24917559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing neural differentiation of induced pluripotent stem cells by conductive graphene/silk fibroin films.
    Niu Y; Chen X; Yao D; Peng G; Liu H; Fan Y
    J Biomed Mater Res A; 2018 Nov; 106(11):2973-2983. PubMed ID: 30260553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced graphene oxide-GelMA-PCL hybrid nanofibers for peripheral nerve regeneration.
    Fang X; Guo H; Zhang W; Fang H; Li Q; Bai S; Zhang P
    J Mater Chem B; 2020 Dec; 8(46):10593-10601. PubMed ID: 33135715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.