These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 30418454)

  • 1. Membrane nanotube pearling restricted by confined polymers.
    Yan Z; Li S; Luo Z; Xu Y; Yue T
    Soft Matter; 2018 Nov; 14(46):9383-9392. PubMed ID: 30418454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From reversible to irreversible: When the membrane nanotube pearling is coupled with phase separation.
    Zhang X; Kang R; Liu Y; Yan Z; Xu Y; Yue T
    Colloids Surf B Biointerfaces; 2022 Jan; 209(Pt 1):112160. PubMed ID: 34736219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the shape deformation of biomembrane tubes with theoretical analysis and computer simulation.
    Liu X; Tian F; Yue T; Zhang X; Zhong C
    Soft Matter; 2016 Nov; 12(44):9077-9085. PubMed ID: 27747359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Confined semiflexible polymers suppress fluctuations of soft membrane tubes.
    Mirzaeifard S; Abel SM
    Soft Matter; 2016 Feb; 12(6):1783-90. PubMed ID: 26700763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How tubular aggregates interact with biomembranes: wrapping, fusion and pearling.
    Yue T; Xu Y; Sun M; Zhang X; Huang F
    Phys Chem Chem Phys; 2016 Jan; 18(2):1082-91. PubMed ID: 26659809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular modeling of membrane tube pearling and the effect of nanoparticle adsorption.
    Yue T; Zhang X; Huang F
    Phys Chem Chem Phys; 2014 Jun; 16(22):10799-809. PubMed ID: 24760327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation and Stability of Lipid Membrane Nanotubes.
    Bahrami AH; Hummer G
    ACS Nano; 2017 Sep; 11(9):9558-9565. PubMed ID: 28873296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Template synthesized molecularly imprinted polymer nanotube membranes for chemical separations.
    Wang HJ; Zhou WH; Yin XF; Zhuang ZX; Yang HH; Wang XR
    J Am Chem Soc; 2006 Dec; 128(50):15954-5. PubMed ID: 17165706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The structure of nanochannels formed by block copolymer solutions confined in nanotubes.
    Chen H; Ruckenstein E
    J Chem Phys; 2009 Sep; 131(11):114904. PubMed ID: 19778146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic Nanotubes Based on Cyclodextrins for Ion-Channel Applications.
    Mamad-Hemouch H; Ramoul H; Abou Taha M; Bacri L; Huin C; Przybylski C; Oukhaled A; Thiébot B; Patriarche G; Jarroux N; Pelta J
    Nano Lett; 2015 Nov; 15(11):7748-54. PubMed ID: 26471761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Translocation of a polymer through a nanopore starting from a confining nanotube.
    Sean D; de Haan HW; Slater GW
    Electrophoresis; 2015 Mar; 36(5):682-91. PubMed ID: 25461428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inter-tube adhesion mediates a new pearling mechanism.
    Yue T; Tian F; Sun M; Zhang X; Huang F
    Phys Chem Chem Phys; 2016 Jan; 18(1):361-74. PubMed ID: 26616465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic assembly of polymer nanotube networks via kinesin powered microtubule filaments.
    Paxton WF; Bouxsein NF; Henderson IM; Gomez A; Bachand GD
    Nanoscale; 2015 Jul; 7(25):10998-1004. PubMed ID: 25939271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contactless Stimulation and Control of Biomimetic Nanotubes by Calcium Ion Gradients.
    Kirejev V; Ali Doosti B; Shaali M; Jeffries GDM; Lobovkina T
    Small; 2018 May; 14(21):e1703541. PubMed ID: 29665219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanics of the Formation, Interaction, and Evolution of Membrane Tubular Structures.
    Li S; Yan Z; Luo Z; Xu Y; Huang F; Zhang X; Yi X; Yue T
    Biophys J; 2019 Mar; 116(5):884-892. PubMed ID: 30795870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluctuations of a membrane nanotube revealed by high-resolution force measurements.
    Valentino F; Sens P; Lemière J; Allard A; Betz T; Campillo C; Sykes C
    Soft Matter; 2016 Nov; 12(47):9429-9435. PubMed ID: 27830219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation mechanism of nanotubes comprising layers of PbS nanoparticles in polymer-surfactant solutions.
    Orphanou M; Leontidis E; Kyprianidou-Leodidou T; Caseri W; Krumeich F; Kyriacou KC
    J Colloid Interface Sci; 2006 Oct; 302(1):170-7. PubMed ID: 16842806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics simulations of capillary rise experiments in nanotubes coated with polymer brushes.
    Dimitrov DI; Milchev A; Binder K
    Langmuir; 2008 Feb; 24(4):1232-9. PubMed ID: 17918870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of chirality and length on the penetrability of single-walled carbon nanotubes into lipid bilayer cell membranes.
    Skandani AA; Zeineldin R; Al-Haik M
    Langmuir; 2012 May; 28(20):7872-9. PubMed ID: 22545729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical reinforcement of polymeric fibers through peptide nanotube incorporation.
    Rubin DJ; Nia HT; Desire T; Nguyen PQ; Gevelber M; Ortiz C; Joshi NS
    Biomacromolecules; 2013 Oct; 14(10):3370-5. PubMed ID: 24070499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.