These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 30418529)

  • 1. Subdistribution hazard models for competing risks in discrete time.
    Berger M; Schmid M; Welchowski T; Schmitz-Valckenberg S; Beyersmann J
    Biostatistics; 2020 Jul; 21(3):449-466. PubMed ID: 30418529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A proportional hazards regression model for the subdistribution with right-censored and left-truncated competing risks data.
    Zhang X; Zhang MJ; Fine J
    Stat Med; 2011 Jul; 30(16):1933-51. PubMed ID: 21557288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Random Survival Forests With Competing Events: A Subdistribution-Based Imputation Approach.
    Behning C; Bigerl A; Wright MN; Sekula P; Berger M; Schmid M
    Biom J; 2024 Sep; 66(6):e202400014. PubMed ID: 39162087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The importance of censoring in competing risks analysis of the subdistribution hazard.
    Donoghoe MW; Gebski V
    BMC Med Res Methodol; 2017 Apr; 17(1):52. PubMed ID: 28376736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-dependent covariates in the proportional subdistribution hazards model for competing risks.
    Beyersmann J; Schumacher M
    Biostatistics; 2008 Oct; 9(4):765-76. PubMed ID: 18434297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the relation between the cause-specific hazard and the subdistribution rate for competing risks data: The Fine-Gray model revisited.
    Putter H; Schumacher M; van Houwelingen HC
    Biom J; 2020 May; 62(3):790-807. PubMed ID: 32128860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of the Absolute Risk of Cardiovascular Disease and Other Events: Issues With the Use of Multiple Fine-Gray Subdistribution Hazard Models.
    Austin PC; Putter H; Lee DS; Steyerberg EW
    Circ Cardiovasc Qual Outcomes; 2022 Feb; 15(2):e008368. PubMed ID: 35098725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proportional subdistribution hazards modeling offers a summary analysis, even if misspecified.
    Grambauer N; Schumacher M; Beyersmann J
    Stat Med; 2010 Mar; 29(7-8):875-84. PubMed ID: 20213713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Goodness-of-fit test for monotone proportional subdistribution hazards assumptions based on weighted residuals.
    Boher JM; Filleron T; Giorgi R; Kramar A; Cook RJ
    Stat Med; 2017 Jan; 36(2):362-377. PubMed ID: 27790725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An imputation approach using subdistribution weights for deep survival analysis with competing events.
    Gorgi Zadeh S; Behning C; Schmid M
    Sci Rep; 2022 Mar; 12(1):3815. PubMed ID: 35264661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conditional score approaches to errors-in-variables competing risks data in discrete time.
    Wen CC; Chen YH
    Stat Med; 2024 Aug; 43(18):3503-3523. PubMed ID: 38857600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Additive subdistribution hazards regression for competing risks data in case-cohort studies.
    Wogu AF; Li H; Zhao S; Nichols HB; Cai J
    Biometrics; 2023 Dec; 79(4):3010-3022. PubMed ID: 36606409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The number of primary events per variable affects estimation of the subdistribution hazard competing risks model.
    Austin PC; Allignol A; Fine JP
    J Clin Epidemiol; 2017 Mar; 83():75-84. PubMed ID: 28088594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Practical recommendations for reporting Fine-Gray model analyses for competing risk data.
    Austin PC; Fine JP
    Stat Med; 2017 Nov; 36(27):4391-4400. PubMed ID: 28913837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A full competing risk analysis of hospital-acquired infections can easily be performed by a case-cohort approach.
    Wolkewitz M; Palomar-Martinez M; Olaechea-Astigarraga P; Alvarez-Lerma F; Schumacher M
    J Clin Epidemiol; 2016 Jun; 74():187-93. PubMed ID: 26633600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semiparametric accelerated failure time cure rate mixture models with competing risks.
    Choi S; Zhu L; Huang X
    Stat Med; 2018 Jan; 37(1):48-59. PubMed ID: 28983935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Joint modeling of multivariate longitudinal data and the dropout process in a competing risk setting: application to ICU data.
    Deslandes E; Chevret S
    BMC Med Res Methodol; 2010 Jul; 10():69. PubMed ID: 20670425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Penalized variable selection in competing risks regression.
    Fu Z; Parikh CR; Zhou B
    Lifetime Data Anal; 2017 Jul; 23(3):353-376. PubMed ID: 27016934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cause-specific cumulative incidence estimation and the fine and gray model under both left truncation and right censoring.
    Geskus RB
    Biometrics; 2011 Mar; 67(1):39-49. PubMed ID: 20377575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regularized Weighted Nonparametric Likelihood Approach for High-Dimension Sparse Subdistribution Hazards Model for Competing Risk Data.
    Tapak L; Kosorok MR; Sadeghifar M; Hamidi O; Afshar S; Doosti H
    Comput Math Methods Med; 2021; 2021():5169052. PubMed ID: 34589136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.